
DEPARTMENT OF INFORMATICS

UNIVERSITY OF FRIBOURG (SWITZERLAND)

Efficient, Scalable, and

Provenance-Aware Management of

Linked Data

THESIS

presented to the Faculty of Science of the University of Fribourg (Switzerland) in

consideration for the award of the academic grade of Doctor scientiarum

informaticarum

by

MARCIN WYLOT

from

POLAND

Thesis No: 1903

UniPrint

2015

i

Accepted by the Faculty of Science of the University of Fribourg (Switzerland) upon

the recommendation of Prof. Dr. Paul Groth, Prof. Dr. Manfred Hauswirth, Prof. Dr.

Béat Hirsbrunner, and Prof. Dr. Marino Widmer.

Fribourg, June 16, 2015

Thesis supervisor Dean

Prof. Dr. Philippe Cudré-Mauroux Prof. Dr. Fritz Müller

Abstract ii

The proliferation of heterogeneous Linked Data on the Web requires data manage-

ment systems to constantly improve their scalability and efficiency. Despite recent ad-

vances in distributed Linked Data management, efficiently processing large-amounts

of Linked Data in a scalable way is still very challenging. In spite of their seemingly

simple data models, Linked Data actually encode rich and complex graphs mixing both

instance and schema-level data. At the same time, users are increasingly interested in

investigating or visualizing large collections of online data by performing complex ana-

lytic queries. The heterogeneity of Linked Data on the Web also poses new challenges to

database systems. The capacity to store, track, and query provenance data is becoming

a pivotal feature of Linked Data Management Systems. In this thesis, we tackle issues

revolving around processing queries on big, unstructured, and heterogeneous Linked

Data graphs.

In the first part of this work, we introduce a new hybrid storage model for Linked

Data based on recurring graph patterns and graph partitioning to enable complex cloud

computation on massive webs of data. We describe the architecture of our approach,

its main data structures, and the new algorithms we use to partition and allocate data.

Contrary to previous approaches, our techniques perform an analysis of both instance

and schema information prior to partitioning the data. We extract graph patterns from

the data and combine them with workload information in order to find effective ways of

co-locating, partitioning and allocating data on clusters of commodity machines. Our

approaches enable efficient and scalable distributed Linked Data management in the

cloud, and support both transactional and analytic queries efficiently. We perform an

extensive evaluation of our techniques showing that they are between 140 and 485 times

faster than state-of-the-art approaches on standard workloads.

In the second part of this work, we extend our techniques to efficiently handle the

problem of storing, tracking, and querying provenance in Linked Data. We implement

two different storage models to physically co-locate lineage and instance data, and for

each of them we implement various algorithms to efficiently track lineage of queries

at two granularity levels. Additionally, we tackle the problem of efficiently execut-

ing queries tailored with provenance data. We introduce five different query execution

strategies for queries that incorporate knowledge of provenance. We also present the

results of a comprehensive empirical evaluation of our provenance-aware methods over

two different datasets and workloads.

The techniques we develop over the course of this thesis are instrumental in deploying

Linked Data Management Systems at large on clusters of commodity machines.

Resumé iii

La prolifération des données sémantiques hétérogènes sur le Web exige que les systèmes

de base de données liées améliorent constamment leur modularité et efficacité. Malgré

les récents progrès dans la gestion des données complexes dans les systèmes distribués,

le traitement de grandes quantités de données liées de manière évolutive est encore très

difficile. En dépit de leurs modèles de données apparemment simples, elle encodent

des graphes riches et complexes mélangeant les données d’instance et du schéma. En

même temps, les utilisateurs sont de plus en plus intéressés à examiner et à visualiser

des grandes collections de données en effectuant des requêtes analytiques complexes.

L’hétérogénéité du Web de données pose des nouveaux défis pour les systèmes de base

de données. La capacité de stocker, traquer et examiner la provenance des données de-

vient une caractéristique essentielle des bases de données liées. Dans cette thèse, nous

traitons des défis provenant de ces deux domaines: le traitement des requêtes sur de

grands graphes non structurés et sur le Web de données hétérogènes.

Dans la première partie de ce travail, nous introduisons un nouveau modèle de stock-

age hybride pour les données liées qui se base sur les graphes récurrents et le parti-

tionnement de graphe permettant d’effectuer des opérations complexes en nuage sur

le Web de données. Nous décrivons l’architecture de nos techniques, leurs structures

des données et les nouveaux algorithmes que nous utilisons pour partitionner et répartir

les données. Contrairement aux techniques précédentes, nous effectuons des analy-

ses des instances et du schéma avant le partitionnement des données. Nous extrayons

des modèles des graphes récurrents des données et nous les combinons avec les in-

formations concernant la charge de travail afin de trouver des moyens efficaces pour

co-localiser, partitionner et répartir des données sur des grappes de serveurs. Nos ap-

proches permettent la gestion de données liées en nuage d’une manière très efficace et

extensible.

Dans la deuxième partie de ce travail, nous étendons nos techniques pour traiter le

problème du stockage, du traquage et de l’examen de la provenance des données liées

de manière efficace. Nous avons mis en place deux différents modèles de stockage pour

co-localiser les données des instances et de la provenance. Pour ces deux modèles,

nous avons également mis en place différents algorithmes pour traquer la provenance

des requêtes à deux niveaux de granularité. En outre, nous traitons le problème de

l’exécution des requêtes adaptées avec des données de provenances. Nous introduisons

les cinq stratégies différentes pour effectuer des requêtes qui intègrent la connaissance

de la provenance.

Les techniques que nous établissons sont essentielles dans le déploiement de systèmes

de gestion de données massives liées sur des grappes de serveurs.

Zusammenfassung iv

Die wachsende Verbreitung von heterogenen semantischen Daten im Netz erfordert

die konstante Verbesserung der Skalierbarkeit und der transaktionalen Effizienz von

Linked Data. Trotz jüngster Entwicklungen im Gebiet des verteilten Linked Data ist

das verarbeiten grosser Mengen von Linked Data äusserst anspruchsvoll.

Gerade wegen der scheinbar einfachen Datenmodelle, enkodieren schlussendlich um-

fangreiche und komplexe Graphen durch das Mischen von Instanzen und Schemata.

Gleichzeitig sind Anwender zunehmend interessiert durch komplexe analytische Abfra-

gen grosse Sammlungen von online Daten für Untersuchungen und Visualisierung zu

nutzen. Die Heterogenität von Linked Data auf dem Netz bringen zusätzliche An-

forderungen für Datenbanksysteme. Die Fähigkeit Herkunftsmetadaten (provenance

data) zu speichern, verfolgen und abzufragen bekommt zunehmend ein zentrales Merk-

mal von modernen Triplestores. In dieser Doktorarbeit werden Herausforderung aus

beiden Gebieten angegangen: das Ausführen von Abfragen auf grossen unstrukturierten

Graphen und auch auf heterogenen Linked Data.

Im ersten Teil dieser Arbeit führen wir einen neuen hybrides Speichermodel für Linked

Data ein. Dabei werden wiederholenden Graphmuster und Graphenpartionierungen

genutzt um komplexe verteilte Berechnungen auf grossen Mengen von Datennetzen zu

ermöglichen. Wir erläutern die Architektur unseres Ansatzes, die zentralen Datenstruk-

turen, und die neuen Algorithmen welche für die Partitionierung und das Allozieren

von Daten zuständig sind. Im Gegensatz zu bestehenden Ansätzen basiert unsere Par-

titionierung auf der physiologischen Analyse der Instanz- und Schematainformationen.

Wir extrahieren sich wiederholende Graphmuster aus den Daten und kombinieren diese

mit Nutzlastinformation. Dies ermöglicht eine effektive Anordnung (Kollokation), Por-

tionierung und Allokation der Daten auf einem verteilten System bestehend aus han-

delsüblicher Rechner. Unser Ansatz ermöglicht die effiziente und skalierbare Datenver-

waltung von Linked Data in verteilten Systemen, wobei transaktionale und analytische

Abfragen effizient unterstützt werden.

Im zweiten Teil erweitern wir unsere Techniken um das Speichern, Verfolgen und

Abfragen von Herkunftsmetadaten (provenance data) effizient lösen zu können. Dazu

haben wir zwei unterschiedliche Speichermodelle implementiert, für die Anordnung

nach gemeinsamer Herkunft und für die Instanzdaten. Für beide haben wir verschiede-

nen Algorithmen um die Herkunft von Abfragen effizient zu verfolgen implementiert,

dies auf zwei Ebenen der Granularität. Weiter zeigen wir auf wie Abfragen zugeschnit-

ten anhand von Herkunftsmetadaten effizient ausgeführt werden können.

Diese Techniken entwickelt haben sind unabdingbar für den Einsatz von Datenver-

waltung auf grossen verteilten Systemen bestehen aus handelsüblichen Rechnern.

Table of Contents

1 Introduction 1
1.1 Background Information . 3

1.1.1 Linked Data Concepts . 3
1.1.2 Provenance . 8

1.2 Research Questions . 10
1.3 Contributions . 13

1.3.1 List of Publications . 15
1.4 Outline . 17

2 Current Approaches to Manage Linked Data 19
2.1 Storing Linked Data using Relational Databases 20

2.1.1 Statement Table . 20
2.1.2 Optimizing Data Storage . 21
2.1.3 Property Tables . 23

2.1.3.1 Clustered Property Tables 23
2.1.3.2 Normalized Property Table 25

2.1.4 Query Execution . 26
2.2 Native Linked Data Stores . 27

2.2.1 Quadruple Systems . 28
2.2.1.1 Data Storage and Partitioning 28
2.2.1.2 Indexing . 29
2.2.1.3 Query Execution . 30

2.2.2 Index Permuted Stores . 30
2.2.2.1 Indexing and Data Storage 31
2.2.2.2 Query Execution . 35

2.2.3 Graph-Based Systems . 37
2.2.3.1 Data Storage and Partitioning 37
2.2.3.2 Indexing . 40
2.2.3.3 Query Execution . 42

2.3 Massively Parallel Processing for Linked Data 43
2.3.1 Data Storage and Partitioning 44
2.3.2 Query Execution . 46

3 An Empirical Evaluation of NoSQL Systems to Manage Linked Data 50
3.1 Systems . 50

v

vi

3.1.1 4store . 51
3.1.2 Jena+HBase . 51
3.1.3 Hive+HBase . 53
3.1.4 CumulusRDF: Cassandra+Sesame 54
3.1.5 Couchbase . 54

3.2 Experimental Setting . 55
3.2.1 Benchmarks . 56

3.2.1.1 Berlin SPARQL Benchmark (BSBM) 56
3.2.1.2 DBpedia SPARQL Benchmark (DBPSB) 56

3.2.2 Computational Environment 56
3.2.3 System Settings . 57

3.2.3.1 4store . 57
3.2.3.2 Jena+HBase . 57
3.2.3.3 Hive+HBase . 58
3.2.3.4 CumulusRDF (Cassandra+Sesame) 58
3.2.3.5 Couchbase . 59

3.3 Performance Evaluation . 59
3.3.1 4store . 59
3.3.2 Jena+HBase . 62
3.3.3 Hive+HBase . 62
3.3.4 CumulusRDF: Cassandra+Sesame 63
3.3.5 Couchbase . 64

3.4 Conclusions . 64

4 Storing and Querying Linked Data in the Cloud 66
4.1 Storage Model . 66

4.1.1 Key Index . 68
4.1.2 Templates . 68
4.1.3 Molecules . 70
4.1.4 Auxiliary Indexes . 71

4.2 System Overview . 72
4.2.1 Master Node . 73
4.2.2 Worker Nodes . 74

4.3 Data Partitioning & Allocation . 74
4.3.1 Physiological Data Partitioning 75
4.3.2 Distributed Data Allocation 76

4.4 Common Operations . 77
4.4.1 Bulk Load . 77
4.4.2 Updates . 78
4.4.3 Query Processing . 79

4.4.3.1 Basic Graph Patterns 79
4.4.3.2 Molecule Queries 80
4.4.3.3 Aggregates and Analytics 80
4.4.3.4 Distributed Join . 80

vii

4.5 Performance Evaluation . 81
4.5.1 Datasets and Workloads . 82
4.5.2 Methodology . 84
4.5.3 Systems . 84
4.5.4 Centralized Environment . 85

4.5.4.1 Hardware Platform 85
4.5.4.2 Results . 85

4.5.5 Distributed Environment . 90
4.5.5.1 Hardware Platform 90
4.5.5.2 Results . 91

4.6 Conclusions . 97

5 Storing and Tracing Provenance in a Linked Data Management System 100
5.1 System Overview . 100
5.2 Provenance Polynomials . 103

5.2.1 Provenance Granularity Levels 104
5.3 Storage Models . 104

5.3.1 Native Storage Model . 105
5.3.2 Storage Model Variants for Provenance 106

5.4 Query Execution . 107
5.4.1 General Query Answering Algorithm 108
5.4.2 Example Queries . 109

5.5 Performance Evaluation . 111
5.5.1 Hardware Platform . 112
5.5.2 Datasets . 112
5.5.3 Workloads . 113
5.5.4 Experimental Methodology 113
5.5.5 Variants Considered . 113
5.5.6 Comparison to 4Store . 114
5.5.7 Query Execution Times . 115
5.5.8 Loading Times & Memory Consumption 120

5.6 Conclusions . 121

6 Executing Provenance-Enabled Queries over Linked Data 122
6.1 Provenance-Enabled Queries . 123
6.2 Provenance in Query Processing . 126

6.2.1 Query Execution Pipeline . 126
6.2.2 Generic Query Execution Algorithm 127
6.2.3 Query Execution Strategies . 127

6.3 Storage Model and Indexing . 130
6.3.1 Provenance Storage Model . 131
6.3.2 Provenance Index . 132
6.3.3 Provenance-Driven Full Materialization 132
6.3.4 Adaptive Partial Materialization 133

viii

6.4 Experiments . 133
6.4.1 Implementations Considered 134
6.4.2 Experimental Environment . 135
6.4.3 Results . 136

6.4.3.1 Datasets Analysis 137
6.4.3.2 Discussion . 138
6.4.3.3 Query Performance Analysis 140
6.4.3.4 Representative Scenario 143

6.4.4 End-to-End Workload Optimization 144
6.5 Conclusions . 146

7 Conclusions 148
7.1 Future Work . 149

List of Figures 152

List of Tables 155

Bibliography 156

Chapter 1

Introduction

The nature of the World Wide Web has evolved from a web of linked documents to a

web including Linked Data [20]. Traditionally, we were able to publish documents on

the Web and create links between them. Those links however, allowed only to traverse

the document space without understanding the relationships between the documents

and without linking to particular pieces of information. Linked Data allows to create

meaningful links between pieces of data on the Web [16]. The adoption of Linked

Data technologies has shifted the Web from a space connecting documents to a global

space where pieces of data from different domains are semantically linked and inte-

grated to create a global Web of Data [20]. Linked Data enables operations to deliver

integrated results as new data is added to the global space. This opens new opportuni-

ties for applications such as search engines, data browsers, and various domain-specific

applications [20].

The Web of Linked Data is rapidly growing from a dozen data collections in 2007 to

a space of hundreds data sources in April 2014 [12, 19, 103]. The number of linked

datasets doubled between 2011 and 2014 [103], which shows an accelerating trend of

data integration on the Web. The Web of Linked Data contains heterogeneous data

coming from multiple sources, various contributors, produced using different methods,

degrees of authoritativeness, and gathered automatically from independent and poten-

tially unknown sources. Figure 1.1 shows the Linking Open Data cloud diagram cre-

ated in April 2014; it depicts the scale and heterogeneity of Linked Data on the Web.

Such data size and heterogeneity brings new challenges for Linked Data management

systems (i.e., systems which allow to store and to query Linked Data). While small

amounts of Linked Data can be handled in-memory or by standard relational database

1

2

systems, big Linked Data graphs, which we nowadays have to deal with, are very hard

to manage. Modern Linked Data management systems have to face large amounts of

heterogeneous, inconsistent, and schema-free data.

Linked Datasets as of August 2014

Uniprot

Alexandria
Digital Library

Gazetteer

lobid
Organizations

chem2
bio2rdf

Multimedia
Lab University

Ghent

Open Data
Ecuador

Geo
Ecuador

Serendipity

UTPL
LOD

GovAgriBus
Denmark

DBpedia
live

URI
Burner

Linguistics

Social Networking

Life Sciences

Cross-Domain

Government

User-Generated Content

Publications

Geographic

Media

Identifiers

Eionet
RDF

lobid
Resources

Wiktionary
DBpedia

Viaf

Umthes

RKB
Explorer

Courseware

Opencyc

Olia

Gem.
Thesaurus

Audiovisuele
Archieven

Diseasome
FU-Berlin

Eurovoc
in

SKOS

DNB
GND

Cornetto

Bio2RDF
Pubmed

Bio2RDF
NDC

Bio2RDF
Mesh

IDS

Ontos
News
Portal

AEMET

ineverycrea

Linked
User

Feedback

Museos
Espania
GNOSS

Europeana

Nomenclator
Asturias

Red Uno
Internacional

GNOSS

Geo
Wordnet

Bio2RDF
HGNC

Ctic
Public

Dataset

Bio2RDF
Homologene

Bio2RDF
Affymetrix

Muninn
World War I

CKAN

Government
Web Integration

for
Linked
Data

Universidad
de Cuenca
Linkeddata

Freebase

Linklion

Ariadne

Organic
Edunet

Gene
Expression
Atlas RDF

Chembl
RDF

Biosamples
RDF

Identifiers
Org

Biomodels
RDF

Reactome
RDF

Disgenet

Semantic
Quran

IATI as
Linked Data

Dutch
Ships and

Sailors

Verrijktkoninkrijk

IServe

Arago-
dbpedia

Linked
TCGA

ABS
270a.info

RDF
License

Environmental
Applications

Reference
Thesaurus

Thist

JudaicaLink

BPR

OCD

Shoah
Victims
Names

Reload

Data for
Tourists in

Castilla y Leon

2001
Spanish
Census
to RDF

RKB
Explorer

Webscience

RKB
Explorer
Eprints
Harvest

NVS

EU Agencies
Bodies

EPO

Linked
NUTS

RKB
Explorer

Epsrc

Open
Mobile

Network

RKB
Explorer
Lisbon

RKB
Explorer

Italy

CE4R

Environment
Agency

Bathing Water
Quality

RKB
Explorer
Kaunas

Open
Data

Thesaurus

RKB
Explorer
Wordnet

RKB
Explorer

ECS

Austrian
Ski

Racers

Social-
semweb

Thesaurus

Data
Open
Ac Uk

RKB
Explorer

IEEE

RKB
Explorer

LAAS

RKB
Explorer

Wiki

RKB
Explorer

JISC

RKB
Explorer
Eprints

RKB
Explorer

Pisa

RKB
Explorer

Darmstadt

RKB
Explorer
unlocode

RKB
Explorer

Newcastle

RKB
Explorer

OS

RKB
Explorer

Curriculum

RKB
Explorer

Resex

RKB
Explorer

Roma

RKB
Explorer
Eurecom

RKB
Explorer

IBM

RKB
Explorer

NSF

RKB
Explorer

kisti

RKB
Explorer

DBLP

RKB
Explorer

ACM

RKB
Explorer
Citeseer

RKB
Explorer

Southampton

RKB
Explorer
Deepblue

RKB
Explorer
Deploy

RKB
Explorer

Risks

RKB
Explorer

ERA

RKB
Explorer

OAI

RKB
Explorer

FT

RKB
Explorer

Ulm

RKB
Explorer

Irit

RKB
Explorer
RAE2001

RKB
Explorer

Dotac

RKB
Explorer
Budapest

Swedish
Open Cultural

Heritage

Radatana

Courts
Thesaurus

German
Labor Law
Thesaurus

GovUK
Transport

Data

GovUK
Education

Data

Enakting
Mortality

Enakting
Energy

Enakting
Crime

Enakting
Population

Enakting
CO2Emission

Enakting
NHS

RKB
Explorer

Crime

RKB
Explorer
cordis

Govtrack

Geological
Survey of

Austria
Thesaurus

Geo
Linked
Data

Gesis
Thesoz

Bio2RDF
Pharmgkb

Bio2RDF
SabiorkBio2RDF

Ncbigene

Bio2RDF
Irefindex

Bio2RDF
Iproclass

Bio2RDF
GOA

Bio2RDF
Drugbank

Bio2RDF
CTD

Bio2RDF
Biomodels

Bio2RDF
DBSNP

Bio2RDF
Clinicaltrials

Bio2RDF
LSR

Bio2RDF
Orphanet

Bio2RDF
Wormbase

BIS
270a.info

DM2E

DBpedia
PT

DBpedia
ES

DBpedia
CS

DBnary

Alpino
RDF

YAGO

Pdev
Lemon

Lemonuby

Isocat

Ietflang

Core

KUPKB

Getty
AAT

Semantic
Web

Journal

OpenlinkSW
Dataspaces

MyOpenlink
Dataspaces

Jugem

Typepad

Aspire
Harper
Adams

NBN
Resolving

Worldcat

Bio2RDF

Bio2RDF
ECO

Taxon-
concept
Assets

Indymedia

GovUK
Societal

Wellbeing
Deprivation imd

Employment
Rank La 2010

GNU
Licenses

Greek
Wordnet

DBpedia

CIPFA

Yso.fi
Allars

Glottolog

StatusNet
Bonifaz

StatusNet
shnoulle

Revyu

StatusNet
Kathryl

Charging
Stations

Aspire
UCL

Tekord

Didactalia

Artenue
Vosmedios

GNOSS

Linked
Crunchbase

ESD
Standards

VIVO
University
of Florida

Bio2RDF
SGD

Resources

Product
Ontology

Datos
Bne.es

StatusNet
Mrblog

Bio2RDF
Dataset

EUNIS

GovUK
Housing
Market

LCSH

GovUK
Transparency
Impact ind.
Households

In temp.
Accom.

Uniprot
KB

StatusNet
Timttmy

Semantic
Web

Grundlagen

GovUK
Input ind.

Local Authority
Funding From
Government

Grant

StatusNet
Fcestrada

JITA

StatusNet
Somsants

StatusNet
Ilikefreedom

Drugbank
FU-Berlin

Semanlink

StatusNet
Dtdns

StatusNet
Status.net

DCS
Sheffield

Athelia
RFID

StatusNet
Tekk

Lista
Encabeza
Mientos
Materia

StatusNet
Fragdev

Morelab

DBTune
John Peel
Sessions

RDFize
last.fm

Open
Data

Euskadi

GovUK
Transparency

Input ind.
Local auth.
Funding f.

Gvmnt. Grant

MSC

Lexinfo

StatusNet
Equestriarp

Asn.us

GovUK
Societal

Wellbeing
Deprivation Imd
Health Rank la

2010

StatusNet
Macno

Oceandrilling
Borehole

Aspire
Qmul

GovUK
Impact

Indicators
Planning

Applications
Granted

Loius

Datahub.io

StatusNet
Maymay

Prospects
and

Trends
GNOSS

GovUK
Transparency

Impact Indicators
Energy Efficiency

new Builds

DBpedia
EU

Bio2RDF
Taxon

StatusNet
Tschlotfeldt

Jamendo
DBTune

Aspire
NTU

GovUK
Societal

Wellbeing
Deprivation Imd

Health Score
2010

Lotico
GNOSS

Uniprot
Metadata

Linked
Eurostat

Aspire
Sussex

Lexvo

Linked
Geo
Data

StatusNet
Spip

SORS

GovUK
Homeless-

ness
Accept. per

1000

TWC
IEEEvis

Aspire
Brunel

PlanetData
Project

Wiki

StatusNet
Freelish

Statistics
data.gov.uk

StatusNet
Mulestable

Enipedia

UK
Legislation

API

Linked
MDB

StatusNet
Qth

Sider
FU-Berlin

DBpedia
DE

GovUK
Households

Social lettings
General Needs

Lettings Prp
Number

Bedrooms

Agrovoc
Skos

My
Experiment

Proyecto
Apadrina

GovUK
Imd Crime
Rank 2010

SISVU

GovUK
Societal

Wellbeing
Deprivation Imd
Housing Rank la

2010

StatusNet
Uni

Siegen

Opendata
Scotland Simd

Education
Rank

StatusNet
Kaimi

GovUK
Households

Accommodated
per 1000

StatusNet
Planetlibre

DBpedia
EL

Sztaki
LOD

DBpedia
Lite

Drug
Interaction
Knowledge

Base
StatusNet

Qdnx

Amsterdam
Museum

AS EDN LOD

RDF
Ohloh

DBTune
artists
last.fm

Aspire
Uclan

Hellenic
Fire Brigade

Bibsonomy

Nottingham
Trent

Resource
Lists

Opendata
Scotland Simd
Income Rank

Randomness
Guide

London

Opendata
Scotland

Simd Health
Rank

Southampton
ECS Eprints

FRB
270a.info

StatusNet
Sebseb01

StatusNet
Bka

ESD
Toolkit

Hellenic
Police

StatusNet
Ced117

Open
Energy

Info Wiki

StatusNet
Lydiastench

Open
Data
RISP

Taxon-
concept

Occurences

Bio2RDF
SGD

UIS
270a.info

NYTimes
Linked Open

Data

Aspire
Keele

GovUK
Households
Projections
Population

W3C

Opendata
Scotland

Simd Housing
Rank

ZDB

StatusNet
1w6

StatusNet
Alexandre

Franke

Dewey
Decimal

Classification

StatusNet
Status

StatusNet
doomicile

Currency
Designators

StatusNet
Hiico

Linked
Edgar

GovUK
Households

2008

DOI

StatusNet
Pandaid

Brazilian
Politicians

NHS
Jargon

Theses.fr

Linked
Life
Data

Semantic Web
DogFood

UMBEL

Openly
Local

StatusNet
Ssweeny

Linked
Food

Interactive
Maps

GNOSS

OECD
270a.info

Sudoc.fr

Green
Competitive-

ness
GNOSS

StatusNet
Integralblue

WOLD

Linked
Stock
Index

Apache

KDATA

Linked
Open
Piracy

GovUK
Societal

Wellbeing
Deprv. Imd
Empl. Rank

La 2010

BBC
Music

StatusNet
Quitter

StatusNet
Scoffoni

Open
Election

Data
Project

Reference
data.gov.uk

StatusNet
Jonkman

Project
Gutenberg
FU-BerlinDBTropes

StatusNet
Spraci

Libris

ECB
270a.info

StatusNet
Thelovebug

Icane

Greek
Administrative

Geography

Bio2RDF
OMIM

StatusNet
Orangeseeds

National
Diet Library

WEB NDL
Authorities

Uniprot
Taxonomy

DBpedia
NL

L3S
DBLP

FAO
Geopolitical

Ontology

GovUK
Impact

Indicators
Housing Starts

Deutsche
Biographie

StatusNet
ldnfai

StatusNet
Keuser

StatusNet
Russwurm

GovUK Societal
Wellbeing

Deprivation Imd
Crime Rank 2010

GovUK
Imd Income

Rank La
2010

StatusNet
Datenfahrt

StatusNet
Imirhil

Southampton
ac.uk

LOD2
Project

Wiki

DBpedia
KO

Dailymed
FU-Berlin

WALS

DBpedia
IT

StatusNet
Recit

Livejournal

StatusNet
Exdc

Elviajero

Aves3D

Open
Calais

Zaragoza
Turruta

Aspire
Manchester

Wordnet
(VU)

GovUK
Transparency

Impact Indicators
Neighbourhood

Plans

StatusNet
David

Haberthuer

B3Kat

Pub
Bielefeld

Prefix.cc

NALT

Vulnera-
pedia

GovUK
Impact

Indicators
Affordable

Housing Starts

GovUK
Wellbeing lsoa

Happy
Yesterday

Mean

Flickr
Wrappr

Yso.fi
YSA

Open
Library

Aspire
Plymouth

StatusNet
Johndrink

Water

StatusNet
Gomertronic

Tags2con
Delicious

StatusNet
tl1n

StatusNet
Progval

Testee

World
Factbook
FU-Berlin

DBpedia
JA

StatusNet
Cooleysekula

Product
DB

IMF
270a.info

StatusNet
Postblue

StatusNet
Skilledtests

Nextweb
GNOSS

Eurostat
FU-Berlin

GovUK
Households

Social Lettings
General Needs

Lettings Prp
Household

Composition

StatusNet
Fcac

DWS
Group

Opendata
Scotland

Graph
Simd Rank

DNB

Clean
Energy
Data

Reegle

Opendata
Scotland Simd
Employment

Rank

Chronicling
America

GovUK
Societal

Wellbeing
Deprivation

Imd Rank 2010

StatusNet
Belfalas

Aspire
MMU

StatusNet
Legadolibre

Bluk
BNB

StatusNet
Lebsanft

GADM
Geovocab

GovUK
Imd Score

2010

Semantic
XBRL

UK
Postcodes

Geo
Names

EEARod
Aspire

Roehampton

BFS
270a.info

Camera
Deputati
Linked
Data

Bio2RDF
GeneID

GovUK
Transparency

Impact Indicators
Planning

Applications
Granted

StatusNet
Sweetie

Belle

O'Reilly

GNI

City
Lichfield

GovUK
Imd

Rank 2010

Bible
Ontology

Idref.fr

StatusNet
Atari

Frosch

Dev8d

Nobel
Prizes

StatusNet
Soucy

Archiveshub
Linked
Data

Linked
Railway

Data
Project

FAO
270a.info

GovUK
Wellbeing

Worthwhile
Mean

Bibbase

Semantic-
web.org

British
Museum

Collection

GovUK
Dev Local
Authority
Services

Code
Haus

Lingvoj

Ordnance
Survey
Linked
Data

Wordpress

Eurostat
RDF

StatusNet
Kenzoid

GEMET

GovUK
Societal

Wellbeing
Deprv. imd
Score '10

Mis
Museos
GNOSS

GovUK
Households
Projections

total
Houseolds

StatusNet
20100

EEA

Ciard
Ring

Opendata
Scotland Graph

Education
Pupils by

School and
Datazone

VIVO
Indiana

University

Pokepedia

Transparency
270a.info

StatusNet
Glou

GovUK
Homelessness

Households
Accommodated

Temporary
Housing Types

STW
Thesaurus

for
Economics

Debian
Package
Tracking
System

DBTune
Magnatune

NUTS
Geo-
vocab

GovUK
Societal

Wellbeing
Deprivation Imd
Income Rank La

2010

BBC
Wildlife
Finder

StatusNet
Mystatus

Miguiad
Eviajes
GNOSS

Acorn
Sat

Data
Bnf.fr

GovUK
imd env.

rank 2010

StatusNet
Opensimchat

Open
Food
Facts

GovUK
Societal

Wellbeing
Deprivation Imd

Education Rank La
2010

LOD
ACBDLS

FOAF-
Profiles

StatusNet
Samnoble

GovUK
Transparency

Impact Indicators
Affordable

Housing Starts

StatusNet
CoreyavisEnel

Shops

DBpedia
FR

StatusNet
Rainbowdash

StatusNet
Mamalibre

Princeton
Library

Findingaids

WWW
Foundation

Bio2RDF
OMIM

Resources

Opendata
Scotland Simd

Geographic
Access Rank

Gutenberg

StatusNet
Otbm

ODCL
SOA

StatusNet
Ourcoffs

Colinda

Web
Nmasuno
Traveler

StatusNet
Hackerposse

LOV

Garnica
Plywood

GovUK
wellb. happy

yesterday
std. dev.

StatusNet
Ludost

BBC
Program-

mes

GovUK
Societal

Wellbeing
Deprivation Imd

Environment
Rank 2010

Bio2RDF
Taxonomy

Worldbank
270a.info

OSM

DBTune
Music-
brainz

Linked
Mark
Mail

StatusNet
Deuxpi

GovUK
Transparency

Impact
Indicators

Housing Starts

Bizkai
Sense

GovUK
impact

indicators energy
efficiency new

builds

StatusNet
Morphtown

GovUK
Transparency

Input indicators
Local authorities

Working w. tr.
Families

ISO 639
Oasis

Aspire
Portsmouth

Zaragoza
Datos

Abiertos
Opendata
Scotland

Simd
Crime Rank

Berlios

StatusNet
piana

GovUK
Net Add.
Dwellings

Bootsnall

StatusNet
chromic

Geospecies

linkedct

Wordnet
(W3C)

StatusNet
thornton2

StatusNet
mkuttner

StatusNet
linuxwrangling

Eurostat
Linked
Data

GovUK
societal

wellbeing
deprv. imd

rank '07

GovUK
societal

wellbeing
deprv. imd
rank la '10

Linked
Open Data

of
Ecology

StatusNet
chickenkiller

StatusNet
gegeweb

Deusto
Tech

StatusNet
schiessle

GovUK
transparency

impact
indicators
tr. families

Taxon
concept

GovUK
service

expenditure

GovUK
societal

wellbeing
deprivation imd

employment
score 2010

FIGURE 1.1: The diagram shows the interconnectedness of datasets (nodes in the
graph) that have been published by heterogeneous contributors to the Linking Open

Data community project. It is based on research conducted in April 2014.

The aim of this work is to propose a solution to manage Linked Data in an efficient way,

with respect to consumption of resources and query execution performance. Our pro-

posed approach is scalable; it is able to handle large datasets and it scales horizontally in

the number of machines leveraged in the cloud environment. Our approach tackles the

inconsistency and heterogeneity of Linked Data by adopting novel provenance-aware

techniques.

In the remaining of this chapter, we introduce some background information, the re-

search questions we tackled, and give an overview of our contributions. In Chapter 2

and 3, we analyze and evaluate in detail several well-known Linked Data management

systems. We highlight their strong and weak points, discuss how they can be improved,

and show that the current approaches are overall suboptimal. In Chapter 4, we propose

our own approach to optimize the management of large amounts of Lined Data, which

maintains an optimal balance between intraoperator parallelism and data co-location.

3

We describe and empirically evaluate our method for efficient and salable data man-

agement. Following that, we present, to the best of our knowledge, the first pragmatic

solution to store, track, and query provenance in a Linked Data management system

in Chapters 5 and 6. We provide a solution enabling to understand how the results of

a query were produced, and which pieces of data were combined to derive the results.

Moreover, we show how our approach allows to tailor query execution with respect to

data provenance.

1.1 Background Information

In this section, we briefly introduce the basic concepts underpinning Linked Data tech-

nologies. We present a data model, vocabularies, and a data exchange format. Then, we

introduce baseline approaches to trace provenance in query execution and to execute

provenance-aware queries. A detailed presentation of current approaches to manage

Linked Data is provided in Chapters 2 and 3. Nevertheless, we expect the reader to be

familiar with a number of basic techniques from the Database Systems, Linked Data,

and Provenance areas. We refer the reader to the following books for an introduction to

the fields related to this work:

• “Readings in database systems.” Hellerstein, Joseph M., and Michael Stonebraker.

MIT Press, 2005. [69]

• “Database systems: the complete book.” Garcia-Molina, Hector. Pearson Educa-

tion India, 2008. [50]

• “Linked data: Evolving the web into a global data space.” Heath, Tom, and Chris-

tian Bizer. Synthesis lectures on the semantic web: theory and technology 1.1

(2011): 1-136. [68]

• “Provenance: an introduction to PROV.” Moreau, Luc, and Paul Groth. Synthesis

Lectures on the Semantic Web: Theory and Technology 3.4 (2013): 1-129. [81]

1.1.1 Linked Data Concepts

Linked Data extends the principles of the World Wide Web from linking documents to

linking pieces of data and create a Web of Data; it specifies data relationships and pro-

vides machine-processable data to the Internet. It is based on standard Web techniques

4

but extends them to provide data exchange and integration. The four main principles of

the Web of Linked Data, as defined by Tim Berners-Lee [15], are:

1. Use URIs (Uniform Resource Identifier) 1 as names for things.

2. Use HTTP (Hypertext Transfer Protocol) 2 URIs so that people can look up those

names.

3. When someone looks up a URI, provide useful information, using standards (Re-

source Description Framework 3, SPARQL Query Language 4).

4. Include links to other URIs, so that they can discover more things.

Linked Data uses RDF, the Resource Description Framework, as basic data model. RDF

provides means to describe resources in a semi-structured manner. The information

expressed using RDF can be exchanged and processed by applications. The ability to

exchange and interlink data on the Web means that it can be used by applications other

than those for which it was originally created, and that it can be linked to further pieces

of information to enrich existing data. It is a graph-based format, optionally defining a

data schema, to represent information about resources. RDF allows to create statements

in the form of triples consisting of Subject, Predicate, Object. A statement expresses

a relationship (defined by a predicate) between resources (subject and object). The

relationship is always from subject to object (it is directional). The same resource can

be used in multiple triples playing the same or different roles, e.g., it can be used as the

subject in one triple and as the object in another. This ability enables to define multiple

connections between the triples, hence creating a connected graph of data. The graph

can be represented as nodes representing resources and edges representing relationships

between the nodes. Figures 1.2 and 1.3 depict simple examples of RDF graphs.

Elements appearing in the triples (subjects, predicates, objects) can be of one of he

following types:

IRI (International Resource Identifier) identifies a resource. It provides a global identi-

fier for a resource without implying its location or a way to access it. The identi-

fier can be re-used by others to identify the same resource. IRI is a generalization

1http://www.w3.org/Addressing/
2http://www.w3.org/Protocols/
3http://www.w3.org/RDF/
4http://www.w3.org/TR/sparql11-query/

http://www.w3.org/Addressing/
http://www.w3.org/Protocols/
http://www.w3.org/RDF/
http://www.w3.org/TR/sparql11-query/

5

FIGURE 1.2: An exemplary graph of triples. [36]

Product
12345

bsbm:
Product

Canon
Ixus 200

rdf:type
rdfs:label

Producer
1234

Canon
canon.de

bsbm:producer

rdf:label foaf:homepage

...

...

Product
Feature

3432 bsbm:productFeature

TFT
Display

rdfs:label

...
Product

Type
102304

rdf:type

bsbm:
Product

Typerdf:type

Digital
Camera

rdf:label

...

FIGURE 1.3: Example showing an RDF sub-graph using the subject, predicate, and
object relations given by the sample data.

6

of URI (Uniform Resource Identifier) allowing non-ASCII characters to be used.

IRI can appear at all three positions in a triple (subject, predicate, object).

Literal is a basic string value that is not an IRI. It can be associated with a datatype,

thus can be parsed and correctly interpreted. It is allowed only as the object of a

triple.

Blank node is used to denote a resource without assigning a global identifier with an

IRI, it is a local unique identifier used within a specific RDF graph. It is allowed

as the subject and the object in a triple.

The framework provides means to co-locate triples in a subset and to associate such

subsets with an IRI [35]. A subset of triples constitutes an independent graph of data

(named graph). In practice, it provides data managers with a mechanism to create a

collection of triples. A dataset can consist of multiple named graphs and no more than

one unnamed (default) graph.

Even though RDF does not require any naming convention for IRIs and does not im-

pose any schema on data it can be used in combination with vocabularies provided by

RDF Schema language [37]. RDFS is a semantic extension of RDF enabling to spec-

ify semantic characteristics of RDF data. It provides a data-modeling vocabulary for

RDF data. It enables to state than an IRI is a property and that a subject and an object

of the IRI have to be of a certain type. RDF schema allows to classify resources with

categories, i.e. classes, types. Classes allow to regroup resources. Members of a class

are called instances, while classes are also resources and can be described with triples.

RDFS allows classes and properties to be hierarchical, as a class can be a sub-class of

a more generic class. In the same way, properties can be defines as a specific property

(sub-property) of a more generic one. RDFS enables also to specify a domain and a

range of a predicate, i.e., types of resources allowed as subjects and objects. Proper-

ties are also resources that can be described by triples. An instance can be associated

with several independent classes specifying different sets of properties. RDFS defines

also a set of utility properties allowing to link pieces of data, e.g., seeAlso to indicate

a resource providing additional information about the resource of a subject. Another

interesting vocabulary set defined by RDFS is reification, which allows to write state-

ments about statements.

Richer vocabularies or ontology languages (e.g., OWL) enable to express logical con-

straints on Web data. The OWL 2 Web Ontology Language [32] allows to define ontolo-

gies to give a semantic meaning to the data. An ontology provide classes, properties,

7

and data values. An ontology is exchanged along with the data as an RDF document,

and defines vocabularies and relationships between terms, often covering a specific do-

main shared by a community. An ontology can also be seen as an RDF graph, where

terms are represented by nodes and relationships between them are expressed by edges.

Linked Data in general is a static snapshot of information, though it can express events

and temporal aspects of entities with specific vocabulary terms [34]. A snapshot of the

state can be seen as a separate (named) RDF graph containing a current state of the

universe. Changes in data typically concern relationships between resources, IRIs and

Literals are constant and rarely change their value.

Linked Data allows to combine and process data from many sources [15]. The basic

triple representation of pieces of data combined together results in large RDF graphs.

Such large amounts of data are made available as Linked Data where datasets are inter-

linked and published in the Web.

Linked Data can be serialized in a number of formats that are logically equivalent. The

data can be stored in the following formats:

N-Triples provides a simple, plain-text way to serialize Linked Data. Each line in

a file represents a triple, the period at the end signals the end of a statement

(triple). This format is often used to exchange large amount of Linked Data and

for processing graphs with stream-oriented tools.

N-Quads is a simple extension of N-Triples. It allows to add a fourth optional element

in a line denoting a named graph IRI, which the triple belongs to.

Turtle is an extension of N-Triples; it introduces a number of syntactic shortcuts, such

as prefixes, lists, and shorthands for datatyped literals. It provides a trade-off

between ease of writing, parsing, and readability. It does not support the notion

of named graphs.

TriG extends Turtle to support multiple named graphs.

JSON-LD provides a JSON syntax for Linked Data. It can be used to transform JSON

documents into Linked Data, and offers universal identifiers for JSON objects and

a way in which a JSON document can link to an object in another document.

RDFa is a syntax used to embed Linked Data in HTML and XML documents. This

enables to aggregate data from web pages and use it to enrich search results or

presentation.

8

RDF/XML provides an XML syntax for Linked Data.

To facilitate querying and manipulating Linked Data on the Web, a semantic query

language is needed. Such a language, named SPARQL Protocol and RDF Query Lan-

guage, was introduced by the World Wide Web Consortium. SPARQL [33] can be

used to formulate queries ranging from simple graph patterns to very complex analytic

queries. Queries may include unions, optionals, filters, value aggregations, path expres-

sions, subqueries, value assignment, etc. Apart from SELECT queries, the language

also supports:

ASK queries to retrieve binary “yes/no” answer to a query,

CONSTRUCT queries to construct new RDF graphs from a query result.

All standards and Linked Data concepts are defined and explained in detail in documents

published by the World Wide Web Consortium. We refer the reader to the following

recommendations for further detail:

• RDF 1.1 Primer [36]

• RDF 1.1 Concepts and Abstract Syntax [34]

• RDF Schema 1.1 [37]

• RDF 1.1: On Semantics of RDF Datasets [35]

• OWL 2 Web Ontology Language [32]

• SPARQL 1.1 Overview [33]

1.1.2 Provenance

“Provenance is information about entities, activities, and people involved in produc-

ing a piece of data or thing, which can be used to form assessments about its quality,

reliability or trustworthiness” [56].

Data provenance has been widely studied within the database, distributed systems, and

Web communities. For a comprehensive review of the provenance literature, we re-

fer readers to recent positions in the field [81, 86]. Likewise, Cheney et al. provide

9

a detailed review of provenance within the database community [29]. Broadly, one

can categorize the work into three areas [55]: content, management, and use. Work in

the content area has focused on representations and models of provenance. In manage-

ment, the work has focused on collecting provenance in software ranging from scientific

databases [38] to operating systems or large scale workflow systems as well as mecha-

nisms for querying it. Finally, provenance is used for a variety of applications including

debugging systems, calculating trust and checking compliance. Here, we briefly review

the work on provenance with respect to the Web of Data. We also review recent results

applying theoretical database results with respect to SPARQL.

Within the Web of Data community, one focus of work has been on designing mod-

els (i.e., ontologies) for provenance information [64]. The W3C Incubator Group on

provenance mapped nine different models of provenance [102] to the Open Provenance

Model [87]. Given the overlap in the concepts defined by these models, a W3C stan-

dardization activity was created that has led to the development of the W3C PROV

recommendations for interchanging provenance [56]. This recommendation is being

increasingly adopted by both applications and data set providers - there are over 60

implementations of PROV [72].

In practice, provenance is attached to Linked Data using either reification [67] or named

graphs [26]. Widely used datasets such as YAGO [70] reify their entire structures to

facilitate provenance annotations. Indeed, provenance is one reason for the inclusion

of named graphs in the next version of RDF [112]. Both named graphs and reification

lend to complex query structures especially as provenance becomes increasingly fined

grained. Indeed, formally, it may be difficult to track provenance using named graphs

under updates and RDFS reasoning [95].

To address these issues, a number of authors have adopted the notion of annotated

RDF [47, 107]. This approach assigns annotations to each of the triples within a dataset

and then tracks these annotations as they propagate through either the reasoning or

query processing pipelines. Formally, these annotated relations can be represented by

the algebraic structure of communicative semirings, which can take the form of polyno-

mials with integer coefficients [54]. These polynomials represent how source tuples are

combined through different relational algebra operators (e.g., UNION, JOINS). These

relational approaches are now being applied to SPARQL [105].5

5Note, in terms of formalization, SPARQL poses difficulties because of the OPTIONAL operator,
which implies negation.

10

As Damásio et al. have noted [40], many of the annotated RDF approaches do not

expose how-provenance (i.e., how a query result was constructed). The most compre-

hensive implementations of these approaches are [107, 113]. However, they have only

been applied to small datasets (around 10 million triples) and are not aimed at report-

ing provenance polynomials for SPARQL query results. Annotated approaches have

also been used for propagating trust values [65]. Other recent work, e.g., [40, 51], has

looked at expanding the theoretical aspects of applying such a semiring based approach

to capturing SPARQL.

Miles defined the concept of provenance query [85] in order to only select a relevant

subset of all possible results when looking up the provenance of an entity.

A number of authors have presented systems for specifically handling such provenance

queries. Biton et al. showed how user views can be used to reduce the amount of infor-

mation returned by provenance queries in a workflow system [18]. The MTCProv [49]

and the RDFProv [28] systems focus on managing and enabling querying over prove-

nance that results from scientific workflows. Similarly, the ProQL approach [74] de-

fines a query language and proposes relational indexing techniques for speeding up

provenance queries involving path traversals. Glavic and Alonso [52] presented the

Perm provenance system, which was able of computing, storing and querying relational

provenance data. Provenance was computed by using standard relational query rewrit-

ing techniques, e.g., using lazy and eager provenance computation models. Recently,

Glavic with his team have built on this work to show the effectiveness of query rewrit-

ing for tracking provenance in database that support audit logs and time travel [7]. The

approaches proposed in [18, 74] assume a strict relational schema whereas RDF data is

by definition schema free.

The work on annotated RDF [107, 113] developed SPARQL query extensions for query-

ing over annotation metadata (e.g. provenance). Halpin and Cheney have shown how

to use SPARQL Update to track provenance within a triple store without modifica-

tions [60]. The theoretical foundations of using named graphs for provenance within

the Semantic Web were established by Flouris et al. [47].

1.2 Research Questions

Efficient and scalable management of Big Data poses new challenges to the databases

community [4]. Big Data is defined as data which “represents the progress of the human

11

cognitive processes, usually includes data sets with sizes beyond the ability of current

technology, method and theory to capture, manage, and process the data within a toler-

able elapsed time” [53]. The more recent and specific definition of Big Data, given by

Gartner 6, specifies that “Big Data are high-volume, high-velocity, and/or high-variety

information assets that require new forms of processing to enable enhanced decision

making, insight discovery and process optimization” [17]. Big Data systems considered

as appropriate for a specific set of application requirements [3] can be characterized by

three dimensions, referred to as the 3Vs [80]:

Volume : the size of available data;

Velocity : the speed of data processing, how fast the data is streamed;

Variety : the number of types, structures, and sources of data, how unstructured and

heterogeneous the data is.

In this thesis, we tackle a number of fundamental problems related to Linked Data

management in the context of Big Data.

Tackling Big Data challenges, we intuitively begin with the volume issue. The size

of Linked Data is steadily growing [103], thus a modern Linked Data management

system has to be able to deal with increasing amounts of data. However, in the Linked

Data context, variety is especially important. Since Linked Data is schema-free (i.e.

the schema is not strict), standard databases techniques cannot be directly adopted to

manage it. Even though organizing Linked Data in a form of a table is possible (see

Section 2.1), querying such a giant triple table becomes very costly due to the multiple

nested joins required. Moreover, Linked Data comes from multiple sources and can

be produced in various ways for a specific scenario. Heterogeneous data can however

incorporate knowledge on provenance, which can be further leveraged to provide users

with a reliable and understandable description of the way the query was answered, that

is, the way the answer was derived. Furthermore, it can enable a user to tailor queries

with provenance data, including or excluding data of specific lineage (i.e., described in

a systematic way).

We divide the problem we tackle into three sub-problems. Hence, we define three re-

search questions to investigate:

6http://www.gartner.com/

http://www.gartner.com/

12

(Q1) How to efficiently store and query vast amounts of Linked Data in the cloud?
The Linked Data community is still missing efficient and scalable data infrastructures.

New kinds of data and queries (e.g., unstructured and heterogeneous data, graph and

analytic queries) cannot be efficiently handles by existing systems. Small Linked Data

graphs can be handled in-memory or by standard database systems. However, Big

Linked Data with which we deal nowadays [103] are very hard to manage. Modern

Linked Data management systems have to face vast amounts of heterogeneous, incon-

sistent, and schema-free data. In Chapters 2 and 3, we analyze in detail and evaluate

several well-known Linked Data management systems. We describe their strong and

weak points, and we show that the current approaches are overall suboptimal. Follow-

ing that, we propose our own distributed Linked Data management system in Chapter 4.

(Q2) How to store and track provenance in Linked Data processing?
Within the Web community, there have been several efforts to develop models and syn-

taxes to interchange provenance, which resulted in the recent W3C PROV recommenda-

tion [56]. However, less attention has been given to the efficient handling of provenance

data within Linked Data management systems. While some systems store quadruples

or named graphs, to the best of our knowledge, no current high-performance triple store

is able to automatically derive provenance data for the results it produces. We present

our approaches to store and track provenance in Chapter 5.

(Q3) What is the most effective query execution strategy for provenance-enabled
queries?
With the heterogeneity of Linked Data, users may want to tailor their queries based

on the provenance, e.g., “find me all the information about Paris, but exclude all data

coming from commercial websites”. To support such use-cases, the most common

mechanism used within Linked Data management systems is named graphs [26]. This

mechanism was recently standardized in RDF 1.1. [97]. Named graphs associate a set

of triples with a URI. Using this URI, metadata including provenance can be associ-

ated with the graph. While named graphs are often used for provenance, they are also

used for other purposes, for example to track access control information. Thus, while

Linked Data management systems (i.e., triple stores) support named graphs, there has

only been a relatively small number of approaches specifically focusing on provenance

within the triple store itself and much of it has been focused on theoretical aspects of the

problem [40, 51]. We describe our methods and implementation to handle provenance-

aware workload in Chapter 6.

13

1.3 Contributions

To answer the aforementioned research questions, we propose different techniques to

store and process Linked Data. We divide them into three parts: storing and querying

Linked Data in the cloud, storing and tracking provenance in Linked Data, and querying

over provenance data.

The first part addresses the problem of efficient storage of Linked Data (Research Ques-

tion Q1); we propose a novel hybrid storage model considering Linked Data both from

a graph perspective (by storing molecules 7) and from a “vertical” analytics perspective

(by storing compact lists of literal values for a given attribute). Our molecule-based

storage model allows to efficiently partition data in the cloud such as to minimize the

number of expensive distributed operations (e.g., joins). We also propose efficient query

execution strategies leveraging our compact storage model and taking advantage of ad-

vanced data co-location strategies enabling us to execute most of the operations fully in

parallel. Specifically, we make the following contributions:

• a new data partitioning algorithm to efficiently and effectively partition the graph

and co-locate related instances in the same partitions (Section 4.1);

• a new system architecture for handling fine-grained Linked Data partitions at

scale (Section 4.2);

• novel data placement techniques to co-locate semantically related pieces of data

(Section 4.3);

• new data loading and query execution strategies taking advantage of our system’s

data partitions and indices (Section 4.4);

• an extensive experimental evaluation showing that our methods are often two

orders of magnitude faster than state-of-the-art systems on standard workloads

(Section 4.5).

In the second part of this thesis, we present techniques supporting the transparent and

automatic derivation of detailed provenance information for arbitrary queries (Research

7molecules [43] that are similar to property tables [111] and store, for each subject, the list or proper-
ties and objects related to that subject.

14

Question Q2). We introduce new physical models to store provenance data and sev-

eral new query execution strategies to derive provenance information. We make the

following contributions in that context:

• a new way to express the provenance of query results at two different granularity

levels by leveraging the concept of provenance polynomials 8 (Section 5.2);

• two new storage models to represent provenance data in a native Linked Data

store compactly, along with query execution strategies to derive the aforemen-

tioned provenance polynomials while executing the queries (Sections 5.3 and 5.4);

• a performance analysis of our techniques through a series of empirical experi-

ments using two different Web-centric datasets and workloads (Section 5.5).

In the third part of this thesis, we investigate how Linked Data management systems

can effectively support queries that specifically target provenance that it, provenance-

enabled queries (Research Question Q3). To address this problem, we propose different

provenance-aware query execution strategies and we test their performance with respect

to our provenance-aware storage models and advanced co-location strategies. We make

the following contributions in that context:

• a characterization of provenance-enabled queries (queries tailored with prove-

nance data) (Section 6.1);

• five provenance-oriented query execution strategies (Section 6.2);

• storage model and indexing techniques extensions to handle provenance-aware

query execution strategies (Section 6.3);

• an experimental evaluation of our query execution strategies and an extensive

analysis of the datasets used for the experimental evaluation in the context of

provenance data (Section 6.4).

8 Provenance polynomials [54] are algebraic structures representing how the data is combined to
derive the query answer using different relational algebra operators (e.g., UNION, JOINS).

15

1.3.1 List of Publications

The following list gives an overview of the main publications related to this thesis.

• dipLODocus[RDF]: short and long-tail RDF analytics for massive webs of data

Marcin Wylot, Jigé Pont, Mariusz Wisniewski, and Philippe Cudré-Mauroux

International Semantic Web Conference, 2011

This paper introduces a novel database system for RDF data management called dipLODocus[RDF],

which supports both transactional and analytical queries efficiently. dipLODocus[RDF]

takes advantage of a new hybrid storage model for RDF data based on recurring graph

patterns. In this paper, we describe the general architecture of our system and compare

its performance to state-of-the-art solutions for both transactional and analytic work-

loads.

• DiploCloud: Efficient and Scalable Management of RDF Data in the Cloud

Marcin Wylot and Philippe Cudré-Mauroux

Under Revision. IEEE Transactions on Knowledge and Data Engineering (TKDE),

2015

In this paper, we describe DiploCloud, an efficient and scalable distributed RDF data

management system for the cloud. Contrary to previous approaches, DiploCloud runs

an analysis of both instance and schema information prior to partitioning the data. It

extracts recurring graph patterns from the data and combines them with workload in-

formation in order to find effective ways of partitioning and allocating data on clusters

of commodity machines. In this paper, we describe the architecture of DiploCloud,

its main data structures, as well as the new algorithms we use to partition and allocate

data. We also present an extensive evaluation of DiploCloud showing that our system is

between 140 and 485 times faster than state-of-the-art systems on standard workloads.

• TripleProv: Efficient Processing of Lineage Queries in a Native RDF Store

Marcin Wylot, Philippe Cudré-Mauroux, and Paul Groth

23rd International Conference on World Wide Web, 2014

This paper introduces TripleProv: a new system extending a native RDF store to ef-

ficiently handle such queries. TripleProv implements two different storage models to

physically co-locate lineage and instance data, and for each of them implements algo-

rithms for tracing provenance at two granularity levels. We present the overall architec-

ture of our system, its different lineage storage models, and the various query execution

16

strategies we have implemented to efficiently answer provenance-enabled queries. In

addition, we present the results of a comprehensive empirical evaluation of our system

over two different datasets and workloads.

• Executing Provenance-Enabled Queries over Web Data

Marcin Wylot, Philippe Cudré-Mauroux, and Paul Groth

24th International Conference on World Wide Web, 2015

In this paper, we tackle the problem of efficiently executing provenance-enabled queries

over RDF data. We propose, implement and empirically evaluate five different query

execution strategies for RDF queries that incorporate knowledge of provenance. The

evaluation is conducted on Web Data obtained from two different Web crawls (The Bil-

lion Triple Challenge, and the Web Data Commons). Our evaluation shows that using

an adaptive query materialization execution strategy performs best in our context. In-

terestingly, we find that because provenance is prevalent within Web Data and is highly

selective, it can be used to improve query processing performance. This is a counterin-

tuitive result as provenance is often associated with additional overhead.

• NoSQL Databases for RDF: An Empirical Evaluation

Philippe Cudré-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth, Albert

Haque, Andreas Harth, Felix Leif Keppmann, Daniel Miranker, Juan Sequeda, and

Marcin Wylot

International Semantic Web Conference, 2013

This work is the first systematic attempt at characterizing and comparing NoSQL stores

for RDF processing. We describe four different NoSQL stores and compare their key

characteristics when running standard RDF benchmarks on a popular cloud infrastruc-

ture using both single-machine and distributed deployments.

• BowlognaBench-Benchmarking RDF Analytics

Gianluca Demartini, Iliya Enchev, Marcin Wylot, Joël Gapany, and Philippe Cudré-

Mauroux

Data-Driven Process Discovery and Analysis, 2012

This paper introduces a novel benchmark for evaluating and comparing the efficiency of

Semantic Web data management systems on analytic queries. Our benchmark models

a real-world setting derived from the Bologna process and offers a broad set of queries

reflecting a large panel of concrete, data-intensive user needs and it provides a way to

evaluate systems over analytics and temporal queries.

17

• A Comparison of Data Structures to Manage URIs on the Web of Data

Ruslan Mavlyutov, Marcin Wylot, and Philippe Cudre-Mauroux

European Semantic Web Conference, 2015

The paper presents the first systematic comparison of the most common data structures

used to encode URI data. We evaluate a series of data structures in term of their read-

/write performance and memory consumption.

1.4 Outline

This thesis starts with an extensive analysis of current approaches to manage Linked

Data, as well as an experimental evaluation of several of them. Afterwards, we intro-

duce our approach to manage Linked Data in the cloud, our techniques to store and

track provenance, and our algorithms to execute provenance-enabled queries. More

specifically, the remaining chapters of the thesis are organized as follows:

Chapter 2 presents a detailed overview of multiple Linked Data storage systems and

categorizes them into the following set of groups: native systems, massively par-

allel systems, and relational database-based systems.

Chapter 3 presents an empirical evaluation of four different approaches to process

Linked Data regrouped under the NoSQL umbrella. To act as a reference point,

we also measure the performance of 4store, a native triple store. The goal of this

evaluation is to understand the current state of these systems. In particular, we are

interested in: (i) determining if there are commonalities across the performance

profiles of these systems in multiple configurations (data size, cluster size, query

characteristics, etc.), (ii) characterizing the differences between NoSQL systems

and native triple stores, (iii) providing guidance on where researchers and devel-

opers interested in Linked Data and NoSQL should focus their efforts, and (iv)

providing an environment for replicable evaluation.

Chapter 4 describes our approaches to store Linked Data in a compact way. We intro-

duce a new hybrid storage model considering Linked Data both from a graph and

from an analytics perspective; we describe our template-based molecules; and a

new data partitioning algorithm and data placement techniques to co-locate se-

mantically related pieces of data in the cloud. We also present an implementation

18

of the aforementioned techniques in our triplestore, by describing a system ar-

chitecture for handling fine-grained Linked Data partitions at scale. Finally, we

experimentally evaluate our approaches showing that our methods are often two

orders of magnitude faster than state-of-the-art systems on standard workloads.

Chapter 5 describes our approaches to efficiently store and track provenance in Linked

Data. We start by presenting a new way to express the provenance of query re-

sults, where we leverage the concept of provenance polynomials. Later, we de-

scribe two new storage models to represent provenance data compactly, leverag-

ing the aforementioned concept of molecules. We also present new query execu-

tion strategies to derive the provenance polynomials while executing the queries,

and a performance analysis of our techniques through a series of empirical exper-

iments using two different datasets and workloads.

Chapter 6 introduces our solution to efficiently execute queries over Linked Data in-

cluding provenance data. We start by introducing a definition of provenance-

enabled queries, then we describe our five provenance-oriented query execution

strategies, and finally we perform an experimental evaluation of our query execu-

tion strategies and an extensive analysis of the datasets used for the experimental

evaluation in the context of provenance data.

Chapter 7 summarizes our approaches and contributions; it provides conclusions drawn

from our work and describes potential future work.

Chapter 2

Current Approaches to Manage
Linked Data

In this chapter, we provide a detailed overview of current approaches to Linked Data

management. Since Linked Data can be stored in many different formats, it is especially

important to outline and classify these different approaches. In addition, we discuss

the different advantages and drawbacks of the various technique using a common data

model such that the different engines can be compared more easily.

Linked Data can be stored in a multiplicity of different storage engines. Some of these

are more adapted to store Linked Dataa while others attempt to use general purpose

database storage engines to persist Linked Dataa. We therefore look at a multiplicity

of Linked Data storage systems in the following and try to categorize them into the

following classes: native systems, massively parallel systems, and relational database

engine systems.

In the context of this chapter, we describe native Linked Data management systems as

systems which are originally designed to persist Linked Data primarily. This excludes

systems which use for example relational databases and only transform input data and

queries into Linked Data. The same is true for graph-oriented databases as they pri-

marily store arbitrary graphs and not RDF graphs specifically. We define a non-native

Linked Data storage engine as a specific engine that uses either traditional relational

storage concepts or builds on these concepts to integrate storing and query execution

for Linked Data. The biggest differentiation to native Linked Data storage solutions is

hereby the translation of the Linked Data concepts into concepts that are native to the

underlying engine instead of working directly with the Linked Data.

19

20

We discuss approaches using relational database systems in Section 2.1. Subsequently,

in Section 2.2 we discuss Native Linked Data Management Systems, and finally in

Section 2.3 we discuss the applicability of using massively parallel systems based on

MapReduce and the Hadoop framework.

2.1 Storing Linked Data using Relational Databases

2.1.1 Statement Table

The general data structure that is represented by a set of RDF triples is an edge-labeled

directed graph. Figure 1.3 shows a subset of nodes from a sample dataset inspired by the

data model from the Berlin SPARQL Benchmark[22]. In this representation, subjects

and objects are stored as nodes with an edge and an associated edge property assigned:

[S] − P → [O]. As stated by [6, 25], subjects and objects can be interchanged. In

addition, all triples are unordered[6].

Since RDF does not describe any specific meta-model for the graph, there is no easy

way to determine a set of partitioning or clustering criteria to derive a set of tables

to store the information. In addition, there is no definite notion of schema stability,

meaning that at any time the data schema might change, for example when adding a

new subject-object edge to the overall graph.

A trivial way for for adopting a relational data structure to store RDF data is to store

the input data as a linearized list of triples, storing them as ternary tuples. In [6], this

approach is called the “generic” approach. The RDF specification states that the objects

in the graphs can be either URIs, literals, or blank nodes. Properties (predicates) always

are URI references. Subject nodes can only be URIs or blank nodes. This allows to

specify the underlaying data types for storing subject and predicate values. For storing

object values this becomes a little more complex since the data type of the object literal

is defined by the XML schema that is referenced by the property. A common way is

to store the object values using a common string representation and perform some type

conversion whenever necessary. An example table showing the same data set as in 1.3

is shown in 2.1.

21

.........

Producer1234 http://www.canon.comfoaf:homepage

Producer1234 Canonrdf:label

...

bsbm:producer
bsbm-

inst:Producer1234
Product12345

Canon Ixus 2010rdfs:labelProduct12345

Product12345 bsbm:Productrdf:type

ObjectPredicateSubject

FIGURE 2.1: A simple RDF storage scheme using a linearized triple representation.
The illustration uses schema elements from the Berlin SPARQL Benchmark[22]

An example on Statement Table approach is Jena1 [84] 1. Jena1 for relational databases

stores data in a statement table. The URI and String are encoded in ID and two separate

dictionaries are maintained for literals and resources/URIs. To distinguish literals from

URI in the statement table there are two columns. In Jena2 [110] the schema is de-

normalized and URIs and simple literals are directly stored in the statement table. The

dictionary tables are used only to store long strings (exceeding a threshold). This allows

to perform filters operation directly on the statement table, however it results also higher

storage consumption, since string values are stored multiple times.

2.1.2 Optimizing Data Storage

Storing the triples as a linear list of triples is very simple and yet powerful, since it cap-

tures the complete essence of RDF data. However, the problem with this data structure

is that additional information that is crucial for query processing needs to be analyzed

at query run-time even though it is not likely to change. Examples of this issue are

whether or not the object is a literal or a URI or if the edge is inferred or an original

edge.

One disadvantage of storing the data inside a large triple table is that all fields in this

table must be encoded as string with variable length. This generates additional overhead

during data storage and data processing. The standard MySQL table storage format, for

example, uses an 8 bit or if required 16 bit length identifier followed by the actual string.

To process a set of fields it is not possible to perform a direct offset into the set of tuples,

1https://jena.apache.org/

https://jena.apache.org/

22

and the database storage engine has to interpret the complete row, or requires additional

data structure for pointers into the variable length fields.

One possible way to optimize the storage structure is to apply dictionary encoding on the

resources and literal values. Dictionary encoding allows to replace the variable-length

string representation of a literal or resource by a fixed-length integer value. There are

several possible ways to generate such an integer values. In order to avoid issues with

duplicates, Harris et al. propose in [61] to use a hash function that allows hashing of all

literal and resource values. The actual values are replaced with the hash value and the

hash and the value is stored in an additional table for later reference. 2.2 illustrates this

scheme.

int64 booleanint64 booleanint64int64

inferredliteralprediacte objectsubjectmodel

text

model

int64

hash

text

model

int64

hash

text

model

int64

hash

Models URIs Literals

FIGURE 2.2: Logical database design of the triple table in 3store. Illustration after
[61]

The downside of using a hash function to generate the encoded values lays within the

properties of the hash function. Even though the probability of a hash collision can be

low—depending on the actual hash implementation–they still can occur. As a conse-

quence, the import system has to perform validity checks for all imported literals and

resources to evaluate if the generated hash value generates a collision. While it is easy

to handle such collisions during insertion time as described by Harris et al. it becomes

more complicated to handle collisions at runtime when new triples are inferred based

on the existing knowledge-base. If a collision happens, it is almost impossible to handle

this without modifying the inferred value to generate a different hash value.

In addition, Harris et al. use a cryptographic hash function to calculate a hash key that

has as few collisions as possible. The disadvantage of this approach is that computing

a cryptographic has consumes more CPU cycles compared to a simpler hash-function.

In their example, the calculation of the MD5 hash takes about 1’000 CPU cycles. This

limits a single CPU core on a modern 2.5GHz CPU to calculating 2.5M hashes per

second. Using such an expensive hash function can thus lead to CPU-bound behaviors

even though the database does not operate at optimal speed.

23

To further reduce the probability of collisions, Harris et al. use two different buckets to

store hashes and values. One bucket for literals and one bucket for resources. An E/R

diagram showing the dependency for the two different triple types is shown in Figure

2.3. Another advantage of using the MD5 hash function to represent resources or literals

is that during query processing the actual lookup of a value is not performed by joining

the resources hash table with the triple table as the query processor can directly use the

built-in MD5 hash function.

models triples resources

literal:0

subject

predicate

object

(1,1)

(1,1)

(1,1)

(1,1)

(A) ER diagram modeling a triple pattern
with no literal object

models triples resources

literal:1

subject

predicate

object

(1,1)

(1,1)

(1,1)

(1,1)
literals

(B) ER diagram modeling a triple pattern
having a literal object

FIGURE 2.3: Dependency for the two different triple types [61].

2.1.3 Property Tables

Storing RDF triples in a single large statement table presents a number of disadvantages

when it comes to query evaluation. In most cases, for each set of triple patterns that

is evaluated in the query, a set of self-joins on the table is necessary to evaluate the

graph traversal. Since the single statement table can become very large, this can have a

negative effect on query execution.

While the horizontal storage of semantic data has been first introduced by Agrawal et al.

in [5], the authors of Jena and Sesame propose different ways to alleviate this problem

by introducing the concept of property tables in [25, 110]. Instead of building one large

table for all occurrences of all properties, they propose two different strategies that can

be distinguished into two different concepts: clustered and normalized property tables.

2.1.3.1 Clustered Property Tables

The goal of clustered property tables is to cluster commonly accessed nodes in the

graph together in a single table to avoid expensive joins on the data. In [111], the use

of clustered property tables is proposed for data that is stored using the Dublin Core

24

schema2. In the example of the dataset of the Berlin SPARQL benchmark shown in

Figure 2.4, one property table for all products and a statement table for all other triples

are considered. For efficiency reasons, a product record and all affected triples can only

appear in the property table.

...

...

aaa

NULL

NumericProperty1

............

bsbm:Product Canon Ixus 2010Product12345

LabelTypeSubject

.........

Producer1234 http://www.canon.comfoaf:homepage

ObjectPredicateSubject

Left-Over Triples

Product Property Table

FIGURE 2.4: Example illustrating clustered property tables. Frequently coaccessed
attributes are stored together.

The advantage of this storage format is that querying the database using triple patterns

that are materialized in the property can be evaluated using simple filter predicates in-

stead of performing self-joins on the statement table. Given the query in Listing 2.1, the

transformation to SQL would require two joins, one for each triple pattern. However, if

the metadata define that all triples of the type bsbm:Product are stored in a property

table, this can be translated into a simple predicate evaluation as shown in Listing 2.2.

SELECT ?a
WHERE (?a rdf:type bsbm:Product),

(?a bsbm:NumericProperty1 10)

LISTING 2.1: Example SPARQL Query

SEELCT t.subject FROM clustered_products as t
WHERE t.NumericProperty1 = 10;

LISTING 2.2: Translation of the SPARQL Query in the Listing 2.1 to SQL using the
clustered property table approach

The consequences of this approach are that the schema must be known in advance. If the

properties for a materialized type change during runtime, this requires table alternations

that are costly and often require explicit table-level locking. In addition, multi-valued

attributes cannot be easily represented using a clustered property table. If multi-valued

attributes must be considered, designer has to choose either to not materialize the path
2http://dublincore.org/

http://dublincore.org/

25

of the attribute or, if the sequence of the attribute is bounded, to include all possible

occurrences in the materialized clustered property table.

Properties tables were also implemented in Jena2 [110] together with a statement table.

In that context, multiple-values properties are clustered in a separate table. The system

also allows to specify the type of the column in the underlying database system for the

property value. This can be further leveraged for range queries and filtering. For exam-

ple, the property age can be implemented as an integer, which can then be efficiently

filtered.

2.1.3.2 Normalized Property Table

In this second approach of property tables, the database choses to store triples based

on the occurrence of single properties. The RDF entailment rules rdf1 3 define that

for each triple s p o a number of triples s rdf:type rdf:Property can be

inferred. Based on this knowledge, the database can now select a subset of triples that

will be materialized in these special normalized property tables. All other triples will be

stored in a general statement table. Figure 2.5 shows an example for this pattern where

all instances of rdf:type and rdfs:label are separated in distinct tables. Abadi

et al. present in [2] an extension to this model where all distinct occurrences for a single

property will be stored in a decomposed way in a property table.

.........

Producer1234 http://www.canon.comfoaf:homepage

bsbm:producer bsbm-
inst:Producer1234Product12345

ObjectPredicateSubject

Statement Table

bsbm:ProductProduct12345
Subject Object

CanonProducer1234
Canon Ixus 2010Product12345

Subject Object
<rdf:type> <rdfs:label>

FIGURE 2.5: Example illustrating RDF property tables. For each existing predicate
one subject-object table exists

Storing multi-valued attributes in a normalized property table can be achieved by adding

one row per occurrence in the data set.

3http://www.w3.org/TR/rdf-mt/#RDFRules

http://www.w3.org/TR/rdf-mt/#RDFRules

26

...

...

aaa

NULL

NumericProperty1

............

bsbm:Product Canon Ixus 2010Product12345

LabelTypeSubject

.........

Producer1234 http://www.canon.comfoaf:homepage

ObjectPredicateSubject

Left-Over Triples

Product Property Table

FIGURE 2.6: Example illustrating clustered property tables. In this example, only
commonly used predicates are clustered in property tables.

2.1.4 Query Execution

Query execution in relational RDF engines pushes all computational logic of RDF query

evaluation to the database to achieve the best performance and leverage available op-

timization strategies. In [31], Chong et al. present a system that builds on an Orcale

relational database management system. Instead of supporting the complete syntax of

an RDF query language like SPARQL or RDQL, they focus on the most important sub-

set of these languages which is matching RDF triples. Therefore, they implement a

table function[31] that allows to rewrite a set of RDF triple filters to SQL. Figure 2.7

shows an example of a translation of a simple triple pattern query into the matching

SQL query that is then issued against the database system.

SELECT t.a age
FROM TABLE(RDF_MATCH(

‘(?r Age ?a)‘,
RDFModels(’reviewer’),
NULL)) t

WHERE t.a < 25;

SELECT t.a age
FROM (
SELECT u1.UriValue a, u1.Type,
FROM IdTriples t1, UriMap u1
WHERE t1.PropertyID=29 AND
t1.ModelId=1 AND
u1.UriID = t1.SubjectID) t

WHERE t.a < 25;

FIGURE 2.7: The above listing shows a translation of the triple definition using the
RDF MATCH() table function into SQL.

The general processing schema using the RDF_MATCH() function is based on self-

joins on the statement table. Since the runtime of queries increases with the size of this

statement table, Chong et al. propose using the built-in materialized join-view function-

ality of the underlaying database management system. Therefore, they allow defining a

set of materialized views in the form of subject-subject, subject-property,

subject-object, property-property, property-object, and object-object

as long as the storage requirements are met. In addition to these generic materialized

join-views, they propose defining an additional set of subject- property matrix material-

ized join views, which are basically a adaptation of the previously-described clustered

27

property tables from Section 2.1.3.1. While this allows to increase the query perfor-

mance, since for each materialized join in the matrix table one less self-join has to be

performed, selecting the optimal properties to build the matrix materialized join view is

non-trivial and heavily workload and data dependent.

The advantage of using database inherent materialized views is that they are fully inte-

grated to the tuple life-time process and can thus be automatically dropped and rebuilt if

required. Materialized views are as well independent of semantic schema changes, be-

cause they only have to be rebuilt in case the RDF model changes and can be considered

as secondary storage.

Jena1 [84] simply rewrites SPARQL query to a single SQL query which is then executed

over the statement table. In Jena2 [110], it is often impossible to construct one SQL

query to satisfy all triple patterns over multiple tables (conjunction of statement and

property tables), thus the system first generates a group of SQL queries, one for each set

of patterns that can me evaluated with a singe table, and the second containing patterns

that span tables. The two groups of queries are then joined in nested loops.

2.2 Native Linked Data Stores

In this section, we first describe native RDF storage and query execution strategies. As

mentioned earlier, we define a native RDF systems as a system that was designed to

store exclusively RDF data and thus that is fully optimized for persisting and querying

this data. Naturally, traditional database design and architecture have had some impact

on the design of native RDF stores and thus a number of well-known techniques for

example from join processing were adjusted for querying RDF data as we explain in the

following.

In the area of native RDF stores, we distinguish three main systems trends: Quadruple

stores (Section 2.2.1), Index-Permuted stores (Section 2.2.2) and Graph stores (Section

2.2.3). We first examine systems that store the data in table-like structures, storing

additional information per triple, thus maintaining quadruples that keeps information

related to the specific sub-graph the triples belong to. Then, we analyze index-permuted

storage systems, which use a multiplicity of indexes to support high-performance query

execution for arbitrary queries. Finally, we move on to graph stores, which represent

one of the most natural ways to represent RDF data. Nodes represent in this context

28

subjects and objects, while labeled edges are represented by predicates. In order to

query a graph, an input query is translated into some graph pattern (see Figure 2.19)

that is matched against the full graph. Even for simple patterns, this can result in full

traversals of the complete graph and thus may require significant processing time. Due

to the fact that graph matching, especially against large graphs, is a very complex and

time-consuming task, all existing approached trying to deal with the problem in fact

partition graphs into subgraphs. Although here are few different techniques for doing

that, we can distinguish two main trends. The first one uses classic graph partitioning

algorithms like GGGP [75] used by [23] or METIS used by [71].The second way to

tackle graph partitioning is to try to discover recurring patterns/templates in the RDF

graph to create subgraphs containing nodes describing certain topics within a defined

scope, like what was proposed in [114]. All approaches proposes also a different way of

indexing subgraphs, but the general trend is that there is one main index that allows to

find certain subgraphs where the remaining part of the data can be found. More specific

indices are also proposed for specific types of queries, like Dogma ipd and Dogma epd

[24].

2.2.1 Quadruple Systems

The traditional way to persist RDF triples is to store triple statements directly in a table-

like structure (see above). By exploiting semantic information from the complete RDF

graph, additional data can by annotated per triple and stored as a fourth element for each

input triple. To improve query execution performance on top of this structure, various

indexes can be built. In this section, we present systems and architectures that deal with

persisting RDF triples in a most direct way.

2.2.1.1 Data Storage and Partitioning

Virtuoso [44] by Erlin et al. stores data as RDF quads consisting of a graph element

id, subject, predicate, and object. All the quads are persisted in one table. Each of the

attributes can be indexed in different ways. From a high-level perspective, Virtuoso is

comparable to a traditional relational database with enhanced RDF support. Virtuoso

adds specific types (URIs, language and type-tagged strings) and indexes optimized for

RDF. To partition the data in a clustered environment, Virtuoso uses hash-partitioning

based on the subject of the GSPO(Graph/Subject/Predicate/Object) index. Since the

29

number of resulting partitions is significantly higher than the number of worker nodes

in the cluster environment, one node might receive multiple partitions. The distribution

of the individual partitions can either be simply round-robin or follow more elaborate

models to account for different hardware capacities of the nodes. The system allows

moving partitions between nodes and insures data consistency during the process. To

provide fault tolerance, Virtuoso allows each logical partition to be placed on multiple

nodes.

In [62], Harris et al. propose a system called 4store. The system applies a simple

storage model: It stores quads of (model, subject, predicate, object). In 4store, the

model attribute is equivalent to Virtuoso’s graph. Data is partitioned as non-overlapping

sets of records among segments sharing a subject. To distribute segments across the

cluster, round-robin is used allowing each node of the cluster to store one or more

segments. To cover failing nodes in the cluster, 4store allows to increase the replication

of the partitions. The number of replicas in the cluster corresponds to the number of

nodes which can fail without causing any significant issue.

2.2.1.2 Indexing

In Virtuoso, Erling et al. implement two indexes. The default index (set as a primary

key) corresponds to GSPO (graph, subject, predicate, object). In addition, it provides

an auxiliary bitmap index (OPGS). The former is used to deal with queries where the

subject is known, the latter is applied to cases with known object and unknown subject.

The indexes are stored in compressed form. As strings are the most common values

in the database, for example in URIs, Virtuoso compresses these strings by eliminating

common prefixes. The system does not precalculate optimization statistics; instead it

samples data at query execution time. It also does not compute the exact statistics but

just gets rough numbers of elements and estimates query cost to pick an pppoptimal

execution plan.

Harris et al. propose to store each of the quads in three indexes; in addition, they store

literal values separately. 4store maintains a hash table of graphs where each entry points

to lists of triples in the graph (M-Index in Figure 2.8). Literals are indexed in a separate

hash table (R Index in Figure 2.8) and they are represented as (S,P, O/Literal). Finally,

they consider two predicate-based indexes, referred to as P-Indices in Figure 2.8. For

each predicate, two radix tries are used where the key is either a subject or object, and

respectively object or subject and graph are stored as entries. These indices can be used

30

to select all quads having a given predicate and their subject/object (they hence can be

seen as traditional P:OS and P:SO indices).

2.2.1.3 Query Execution

In Virtuoso, Erling et al. build query execution plans as single lookups grouped in

nested loop joins. They divide query execution into multiple steps where each step takes

as input the output from the previous step. Their query execution plan can hence be seen

as a pipeline of steps. Most of the steps are individually executed. Sometimes, steps

can be joined and executed as a unit. Most queries use predicate indices (P-Indices) in

order to merge elements:
{? a ub:Professor . ?x teacher_of <student> }

The query is executed as an intersection of elements from P-Indices (P:OS) a and <

teacher of >; respectively, elements for < Professor > are merged with elements

related to < student >.
{ ?x a ub:Professor . ?x teaches_course ?c }

The second query is executed as a loop through Professor’s (bitmap index); then, courses

given by each professor are retrieved (from the main index).
select * from <lubm> where

{ ?x a ub:Professor . ?x ub:AdvisorOf ?y }

The full query is executed in four steps, one to translate URIs to IDs, a second one to

get professors, a third one for students the professors advise, and a last one to translate

results form IDs into strings.
select * from <lubm> where

{ ?x a ub:Professor ; ub:advisorOf ?y ; ub:telephone ?tel }

The last query is also executed in four steps since the two properties are retrieved at the

same tame, they are co-located because they have the same subject (GSPO partitioned

on subject).

2.2.2 Index Permuted Stores

The approach of index-permuted RDF storage exploits and optimizes traditional index-

ing techniques for storing RDF data. As most of the identifiers in RDF are URIs strings,

31

!"#$%&'()#*'(+
!'&,'-".(/0(10(20(34

5$#6'..7-&()#*'

!"#$%&'()#*'(8
!'&,'-".(30(90(:0(3;

!"#$%&'()#*'(<
!'&,'-".(40(=0(3/0(31

!"#$%&'()#*'(>
!'&,'-".(;0(?0(330(39

@(

A-*'B

C(

A-*'B

@(

A-*'B

C(

A-*'B

@(

A-*'B

C(

A-*'B

@(

A-*'B

C(

A-*'B

@DE(

D%"%

F$%GH

A,G#$"(I(D'J'"'

KB"'$-%J(

LGGJ76%"7#-.

!5L@MN(MO'$P

@DE(

5%$.'$

!5L@MN

K-&7-'

!'&,'-"!'&,'-" !'&,'-" !'&,'-"

1."#$'(6JO."'$

KB"'$-%J(%GGJ76%"7#-

5(

A-*76'.

5(

A-*76'.

5(

A-*76'.

5(

A-*76'.

Fig. 1. 4store’s cluster topology

To segment resources the same function is applied to the RID of the resource.
This extremely simplistic segmentation schema has some benefits, but also a
number of drawbacks, as illustrated below.

Benefits For commonly encountered data this segmentation scheme produces
remarkably even distribution of data amongst the segments. If sn is the popula-
tion of segment n then the coefficient of variation (cv) for a given system is given

by σ(s)
s̄ . The values of cv for the twenty five million triple BSBM [9] dataset,

a sample of FOAF data4, and the USGS TIGER/Line dataset 5 are shown in
table 1.

Due to the relatively value low of cv there is rarely any need to migrate
segments between nodes, and there is little need to gather the statistics required
for re-segmenting the data during import operations.

4 Taken from a population of ten million FOAF files crawled in 2008 as part of the
QDOS FOAF Index project

5 The USGS TIGER/Line dataset, converted into RDF. This dataset was regularly
used as test data in the development of 4store.

84

FIGURE 2.8: 4Store: System Architecture [62]

one optimizations is to replace these arbitrary long strings with unique integers. As the

data is sparse and many URIs are repetitive, this technique, allows to save memory.

To increase the resulting performance, the indexes are built based on shorter encoded

values rather than the uncompressed values.

2.2.2.1 Indexing and Data Storage

One of the first approaches to exhaustive indexing was proposed by Harth et al. in [63]

for a system called YARS. The authors take into consideration quads of (Subject, Pred-

icate, Object, Context). Exhaustive indexing based on these attribute requires a total of

16 indexes. Harth et al. propose to use six indexes covering all major access patterns

[SPOC, POC,OCS,CSP, CP,OS]. Their indexing approach leverages the property that

32

Generic relational data can have varied dimensions (i.e. number of columns),
and hence the SQL query processing algorithms have to encompass this nature of
relational data. As opposed to that, an RDF triple is a fixed 3-dimensional (S, P,
O) entity and the dimensionality of SPARQL conjunctive triple pattern queries
is also fixed (which depend on the number of conjunctive patterns in the query).
Hence while building the BitMat structure and query processing algorithms, we
made use of this fact.

In essence, BitMat is a 3-dimensional bit-cube, in which each cell is a bit
representing a unique triple denoting the presence or absence of that triple by
the bit value 1 or 0. This bit-cube is flattened in a 2-dimensional bit matrix for
implementation purpose. Figure 1 shows an example of a set of RDF triples and
the corresponding BitMat representation.

Object

:released_in :similar_plot_as :is_a

:the_thirteenth_floor

:the_matrix 0 1 0

0 1 0

0 0 0

1 0 0

0 0 1

0 0 1

:the_matrix "1999"

"1999":released_in

:released_in

:similar_plot_as :the_matrix

:the_matrix :is_a :movie

:is_a :movie

:the_thirteenth_floor

:the_thirteenth_floor

:the_thirteenth_floor

Distinct subjects: [

Distinct predicates: [:is_a]:released_in, :similar_plot_as,

Distinct objects: []

:the_matrix,

:movie:the_matrix, "1999",

]:the_thirteenth_floor

Note: Each bit sequence represents sequence of objects (:the_matrix, "1999", :movie)

Subject Predicate

Fig. 1. BitMat of sample RDF data

If the number of distinct subjects, predicates, and objects in a given RDF
data are represented as sets Vs, Vp, Vo, then a typical RDF dataset covers a very
small set of Vs ×Vp ×Vo space. Hence BitMat inherently tends to be very sparse.
We exploit this sparsity to achieve compactness of the BitMat by compressing
each bit-row using D-gap compression scheme [7]1.

Since conjunctive triple pattern (join) queries are the fundamental building
blocks of SPARQL queries, presently our query processing algorithm supports
only those. These queries are processed using bitwise AND, OR operations on
the compressed BitMat rows. Note that the bitwise AND, OR operations are
directly supported on a compressed BitMat thereby allowing memory efficient
execution of the queries. At the end of the query execution, the resulting filtered
triples are returned as another BitMat (i.e. a query’s answer is another result
BitMat). This process is explained in Section 4.

Figure 2 shows the conjunctive triple pattern for movies that have similar plot
and the corresponding result BitMat. Unlike the conventional RDF triple stores,

1 E.g. In D-gap compression scheme a bit-vector of “0011000” will be represented as
[0]-2,2,3. A bit-vector of “10001100” will be represented as [1]-1,3,2,2.

34

FIGURE 2.9: BitMat: sample bit matrix [11]

B+tree indexes can be queried for range and prefix queries. If the key to such index is

the full quad of subject, predicate, object and context, it becomes possible to query only

a prefix of the key and use the remaining keys as values.

Atre et al. propose a system called BitMat [11] where they store data in compressed in-

verted index structures. They leverage the fact that RDF triples are fixed 3-dimensional

entities. They propose a 3-dimensional bit-cube where each cell represents a unique

triple and the cell value denotes the presence or absence of the triple. Figure 2.9 shows

some sample RDF data and a corresponding bit matrix. The data is then compressed us-

ing D-gap compression4 on each row level. In this approach first approach, the authors

only store S-O matrices, however in their next work [10] they introduce also a trans-

posed matrix of O-P. Furthermore, they also slice out rows along the S and O dimension

and store also P-S and P-O matrices.

Janik et al. introduce a system called BRAHMS [73], whose storage model evolves

around permuted indexes. They store data in three hash tables (S-OP,O-SP,P-SO). The

hash tables are organized in a logically contiguous memory block which can be dumped

and loaded from disk during startup and shutdown, though the system itself works in-

memory.

4http://bmagic.sourceforge.net/dGap.html

http://bmagic.sourceforge.net/dGap.html

33

While the previous section describes strictly relational storage schemas, it is possible

to further increase the performance of query execution on RDF data by exhaustive in-

dexing of the data. The challenges for relational storage engines can be summarized as

follows: if the database uses a large statement table to store the triples for query evalua-

tion, a large number of self-joins is required. Storing the data in property tables is not a

fully contained solution to improve query performance. For queries with bounded pred-

icate values, these patterns can be directly evaluated using filters on the property tables,

but unbounded predicates in the triple patterns require expensive union and self-joins to

evaluate the patterns.

To overcome these limitations, several pieces of work like [109] and [92] show that it is

possible to use a new storage model that applies exhaustive indexing. The foundation

for this approach is that any query on the stored data can be answered by a set of indices

on the subject, predicates, and objects in different orders, namely all their permutations

as shown in Chapter 2.10. In contrast to the concept of property tables where the table

is only sorted by the subject[2], this allows fast access to all parts of the triples by sorted

lists and fast merge-joins on the elements.

< S,P,O >

SPO SOP PSO POS OSP OPS

FIGURE 2.10: Exhaustive Indexing

The Hexastore index structure presented in [109] can be described as shown in Chap-

ter 2.11. In this example, a spo index is described. The first level of the index is a sorted

list of all subjects where each subject is associated to a list of sorted predicates. Each

predicate links to a list of sorted objects. Queries that require many joins and unions in

other storage systems can be answered directly by the index. In the case where the query

requests a list of subjects that are related to two particular objects through any property,

the answer can be computed by merging the subject lists of a osp index. Since the

subject list of this osp index is sorted, this can be done in linear time.

The architectural drawback of this approach is the increase in memory consumption.

Since every combination of possible query patterns is indexed, additional space is re-

quired due to the duplication of data. As the authors of [109] point out, less than a

six-fold increase in memory consumption is required; the approach yields a worst-case

34

si

pi1 pi2
. . . pini

. . .

oi,11

oi,12

..
.

oi,1
ki,1

oi,21

oi,22
..
.

oi,2
ki,1

o
i,ni
1

o
i,ni
2

..
.

o
i,ni
ki,1

FIGURE 2.11: Hexastore Index Structure, Figure after[109]

five-fold increase since for the set of spo, sop, osp, ops, pso, pos indexes, one part

can always be re-used: the initial sorted list of subjects, objects and predicates. Due to

the replication of the data into the different index structures, updating and inserting into

the index can become a second bottleneck.

Neumann et al. present RDF-3X[90] that relies on the same processing scheme with

exhaustive indexing but further optimizes the data structures. As in Hexastore, they use

dictionary encoding to replace variable-sized values by fixed integer IDs. In RDF-3X,

the index data is stored in clustered B+ trees in lexicographic order.

The values inside the B+ tree are delta encoded to further reduce the required amount

of main memory to persist all data. Each triple (in one of the previously defined orders

of spo,sop,...) is stored as a block of maximum 13 bytes. Since the triples are sorted

lexicographically, the expected delta is low. Now the header of the value block contains

two pieces of information: First a flag that identifies if value1 and value2 are unchanged

and the delta of value3 is small enough to fit in the header block; second, if this flag

is not set, it then identifies a case number of how many bytes are needed to decode the

delta to the previous block. In Chapter 2.12, we illustrate this example. The upper part

of the illustration shows the general block structure and the lower half an explicit case.

35

Gap Payload

1 Bit 7 Bit

Delta

0-4 Bytes

Delta

0-4 Bytes

Delta

0-4 Bytes

0 0x7 3 6 1

No Gap Case 7,
all 1byte
deltas

Delta for
value1

Delta for
value2

Delta for
value3

Total Size: 4 Bytes for 3 values

FIGURE 2.12: RDF-3X compression example [90].

Here, the flag is set to 0 meaning more than value3 changed. Case 7 identifies that

for value1, value2, and value3 exactly one byte changed. Using this information, the

deltas can be extracted and the actual value of the triple can be decoded. In addition

to the full index, RDF-3X stores additional aggregated indices to maintain information

about how often a relation between two values occurs. This can be used to increase

the query performance of those queries where unbound variables are used in the triple

pattern, but are not projected and therefore can be used as multipliers for the output of

result patterns. These count-aggregated index structure add another nine indexes to the

previous indexes, six indexes for all pairs of two values, and three indexes for all single

values.

In [94] Owens et al. propose a new storage model for Jena 5 called TDB. The approach

stores data in three B+-tree indexes. They use SPO, POS, and OSP permutations. Each

index contains all elements of all triples. The string values are encoded as 64bit identi-

fiers.

2.2.2.2 Query Execution

To execute simple queries, Harth et al. [63] evaluate which of the six indexes fits best

to answer the query. Selecting the index depends on the access pattern; if a subject

is specified in the query, the SPOC index should be used. If only a predicate is given

in the query, the POC index should be used instead. More complex queries connected

with logical operators require typical relational query optimization like reordering to

efficiently execute all kinds of joins.

5https://jena.apache.org/

https://jena.apache.org/

36

11 11 1

:p2

1 1 1

:p1 :p3

1 1

11 11 1

1 1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

:s1 :p1 :o1

:s1 :p1 :o2

:s1 :p2 :o2

:s2 :p3 :o3

:s3 :p1 :o1

:s3 :p1 :o4

:s3 :p3 :o3

:s3 :p3 :o4

:s2 :p2 :o3

:s2 :p2 :o2

:s2 :p1 :o1

:s1 :p3 :o3

:s1 :p2 :o4

Join over

:s1 ?p ?x

:s3 ?p ?y 11 1 1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

1

1

1

1 1

1 1

1

1

1

1

1

:s1

:s2

:s3

:p1 :p2 :p3

:o1 :o1:o2 :o3 :o4 :o5 :o2 :o3 :o4 :o5 :o2 :o3 :o4 :o5

:s1

:s3

:s1

:s3

AND

:s3:s1 1 1

:p1 :p2 :p3 :p1 :p2 :p3

:o5:o1

1 1 1

1 1 1 1 1

:s1

:s3

:s2

1

:p1 :p2 :p3

Result

:p1 :p2 :p3

1

Result BitMat

Result triples (with BitMat)
:s1 :p1 :o1
:s1 :p1 :o2
:s1 :p3 :o3

fold(retainDIM = predicate)

Unfold(with retainDIM = predicate) Unfold(with retainDIM = predicate)

Bits cleared

Similar to the operation shown as a bit array

simplicity of the figure.

filter

above, is shown on a bit array for theunfold

(variable bindings)
Matching subgraphs (as would be produced by a query engine)

:s3 :p1 :o5

Map triples to a BitMat
fold(retainDIM = predicate)

corresponding to (:s1 ?p ?x) and (:s3 ?p ?y).

For the simplicity of the figure they are shown

as 2 bit arrays of :s1 and :s3 (as internally

bits in other rows are set to 0 as per the

semantics)filter

Filter operation produces 2 BitMats

:p1 :p2 :p3

:s3 :p1 :o1
:s3 :p1 :o4
:s3 :p1 :o5
:s3 :p3 :o3
:s3 :p3 :o4

1

1

 :s1 :p1 :o1 :s3 :p1 :o1
 :s1 :p1 :o1 :s3 :p1 :o4
 :s1 :p1 :o1 :s3 :p1 :o5
 :s1 :p1 :o2 :s3 :p1 :o1
 :s1 :p1 :o2 :s3 :p1 :o4
 :s1 :p1 :o2 :s3 :p1 :o5

T1.S T1.P T1.O T2.S T2.P T2.O

 :s1 :p3 :o3 :s3 :p3 :o3
 :s1 :p3 :o3 :s3 :p3 :o4

?p ?x ?p ?y

transformtripleT

Fig. 3. Single Join on a BitMat

of SQL queries. If RDF triples are presented in a 3-column table (S, P, O), then
these bitarrays correspond to a single column in the table and bit positions set to
1 indicate presence of the S, P, or O values corresponding to those bit positions.
Bitwise AND is performed on these bitarrays which is same as a relational join
on the column represented by RetainDimension. The result of the bitwise AND
is unfolded back on the filtered BitMats BMtp1 and BMtp2. Finally the two Bit-
Mats obtained after unfold are combined using bitwise OR on the corresponding
rows of them. This procedure is depicted in Figure 3.

It can be shown and proved step-by-step that filter, fold, and unfold operators
can be mapped to equivalent SQL operations and the correctness of the algorithm
can be proved. For the scope of this paper, we have omitted these details, but
they can be referred in our technical report [3].

For simplicity of presentation of the algorithm, we have shown it only for
a single join with two triple patterns, but the same algorithm can be extended
to ‘n’ triple patterns joining over a single join variable occurring in the same
dimension by performing filter and fold on each triple pattern, ANDing all the
bitarrays generated by the fold operation, unfolding the AND results on each of
the filtered BitMats, and finally combining all these BitMats with bitwise OR
on the corresponding rows to get the result BitMat. The procedure for subject-
object cross dimensional join (as shown by an example in Section 3.1) is slightly
different and is elaborated in Section 4.1.

4.1 Cross Dimensional Joins

Bitwise AND operation can be performed on two bitarrays only if the corre-
sponding bit positions have the same URI or literal values mapped to them.
This is the case for the same dimension joins.

Cross-dimensional joins need special handling. (?s :p1 ?x . ?y :p2 ?s) is an
example of subject-object (S-O) cross-dimensional join, for which we need to
perform bitwise AND on the subject and object bitarrays. As elaborated in

39

FIGURE 2.13: BitMat: Simple query execution [11]

To execute the queries in BitMat, Atre et al. [11] use bitwise AND and OR operators

on rows in their bit matrices, which results in a binary intersection of elements. The

operations are performed directly on compressed data. To perform a simple single join

query, they first filter by subject rows from matrices containing only triples satisfying

a given query patterns (S1 and S2 rows in Figure 2.13). The result rows are folded on

objects, so that if any object is present for the SP pairs, the value is set to 1. In Figure

2.13 shows two rows for S1 and S3 (3 cells for each predicate P1,P2,P3) without any

specified object. In the example (Figure 2.13) all cells have their value set to 1 for both

subjects. Only the pair S3 and P2 are set to 0, because in the previously selected row

for S2, for all objects related to P2 we had value of 0, i.e., there is no triple (S1,P2,X).

The following step performs AND operation on those two rows, which results in a row

containing 1s for predicates which are present for both rows (“Result” in Figure 2.13, P1

and P3 are set to 1). Subsequently, the inverse operations are performed, i.e., between

the initially selected rows for S1 and S3 and the result row from the previous step. An

AND operation is applied on cells related to each predicate. This gives two rows for

S1 and S3 containing the same values for predicates P1 and P3, but cleared values (set

to 0) for predicate P2 and all objects related to P2. The two rows are combined it the

same way as before with the initial matrix, which gives the final result. The rows for S1

and S3 are those which define the result, and since in the first step the S2 row was not

selected its values are cleared.

The authors also propose different algorithm to perform multiple-join operations, where

first they create multi-join graphs capturing join variables. Then, for each join variable,

they fold matrices associated to all possible triple patterns containing the variable. They

37

perform bitwise AND on bitarrays. The final result is unfolded and in the end a result

BitMat is generated by OR operations on all matrices associated with the triple pattern.

Janik et al. focus in their work [73] on the semantic association discovery problem. The

problem itself refers to finding a semantic connection between two objects. Tackling

this issue, they had to overcome the fact that SPARQL does not fully support that kind of

queries. It supports queries only with fixed distance, whereas to discover association one

is interested in any association independently of a distance between objects (arbitrary

transitive closures, which were not supported by SPARQL at the time). In BRAHMS,

they mainly leveraged two graph algorithms to answer queries: depth-first search and

breadth-first search.

TDB [94] divides a query into basic graph patterns [96] ,which are then matched onto

the stored RDF data. Subsequently, the other operations are executed by replacing all

known values for the variables. This is optimized by favoring elements that are expected

to yield the fewest elements, based on statistics. Matching triple patterns is performed

by choosing the most appropriate index. The system then performs a range scan of the

index for finding particular elements.

2.2.3 Graph-Based Systems

RDF naturally forms graph structures, hence one way to store and process it is through

graph-driven data structures and algorithms. Many graph algorithms are however known

to be very computationally complex. In this section we present approaches trying to ap-

ply ideas from graph the graph processing world to efficiently handle RDF data.

2.2.3.1 Data Storage and Partitioning

In TripleT [46] Fletcher et al. introduce the term of atom around which triples are

co-located. A key k, regardless of its role in the triples, is selected and then all triples

where k occurs are co-located together it improve data locality. For example, for k three

buckets are created. One containing pairs (p,o) where k is subject, one containing pairs

(s,o) where k is predicate, one containing pairs (s,p) where k is object. All those pairs

are sorted. The storage model itself has an index with keys corresponding to subjects

and objects.

38

table. Each (class or entity) vertex u is represented by an adja-
cency list, whose format is [vID, vLabel, ad jList], where vID is
the vertex ID, vLabel is the corresponding URI, and ad jList is the
list of its outgoing edges and the corresponding neighbor vertices.
Formally, ad jList = {(eLabel, nLabel)+}, where eLabel is v’s out-
going edge label that corresponds to some property and nLabel is
v’s neighbor vertex label. Vertex labels and edge labels of an RDF
graph are defined in Definition 2.1. Figure 4 shows the correspond-
ing adjacency list table (T) for the RDF graph in Figure 1(b).
Prefix: y= http://en.wikipedia.org/wiki/

y:Abraham_Li
ncoln

vLabelvID

001

adjList {(eLabel, nLabel)+}

(hasName, Abraham Lincoln) (BornOnDate, 1809-02-12),

(DiedOnDate, 1865-04-15) (DiedIn, y:Washington_D.C)

y:Washington_
D.C

002
(hasName, Washington D.C.) (FoundYear , 1790)

(rdf:type, y:city)

y:United_State
s

003
(hasName, United States) (hasCapital,y:Washington_D.C)

(rdf:type, y:country)

y:Reese_Withe
rspoon

004
(hasName, ReeseWitherspoon) (BornOnDate, 1976-03-22)

(hasCapital, y:New_Orleans,_Louisiana) (rdf:type, y:Actor)

y:New_Orlean
s,_Louisiana

005
(FoundYear, 1718),

(locatedIn, y:United_States) (rdf:type, y:city)

Figure 4: Disk-based Adjacency List Table T

According to Definition 2.3, if a vertex v (in query Q) can match
a vertex u (in RDF graph G), each neighbor vertex and each ad-
jacent edge of v should match to some neighbor vertex and some
adjacent edge of u. Thus, given a vertex u in G, we encode each
of its adjacent edge labels and the corresponding neighbor vertex
labels into bitstrings. We encode query Q with the same encod-
ing method. In this way, we can verify the match between Q and
G by simply checking the match between corresponding encoded
bitstrings. A similar encoding strategy has been proposed in our
earlier work [26]. The differences are that in this work we encode
strings to their bitstring representation, while in the previous work
we encode the eigenvalues of the adjacency matrix.

As mentioned earlier, each row in table T corresponds to an en-
tity vertex or a class vertex. We encode each of its outgoing edge
labels and the corresponding neighbor vertex label into a bitstring.
Specifically, we first encode each adjacent edge e(eLabel, nLabel)
into a bitstring. This bitstring is called edge signature (i.e., eS ig(e)).

DEFINITION 4.1. Given an adjacent edge e(eLabel, nLabel),
the edge signature of e is a bitstring, denoted as eS ig(e), which has
two parts: eS ig(e).e, eS ig(e).n. The first part eS ig(e).e (M bits)
denotes the edge label (i.e. eLabel) and the second part eS ig(e).n
(N bits) denotes the neighbor vertex label (i.e. nLabel).

Given an edge e(eLabel, nLabel), we discuss how to generate
eS ig(e).e and eS ig(e).n, respectively. Let |eS ig(e).e| = M. Us-
ing some appropriate hash functions, we set m out of M bits in
eS ig(e).e to be ‘1’. Specifically, in our implementation, we em-
ploy m different string hash functions Hi (i = 1, ...,m), such as
BKDR and AP hash functions [6]. For each hash function Hi, we
set the (Hi(eLabel) MOD M)-th bit in eS ig(e).e to be ‘1’, where
Hi(eLabel) denotes the hash function value.

In order to encode neighbor vertex label nLabel into eS ig(e).n,
we adopt the following technique. We first represent nLabel by a
set of n-grams [9], where an n-gram is a subsequence of n charac-
ters from a given string. For example, “1809-02-12” can be repre-
sented by a set of 3-grams: {(180),(809),(09-),...,(-12)}. Then, we
adopt some string hash function H for each n-gram g. We use H(g)
to denote hash value of g. Finally, we set the (H(g) MOD N)-th
bit in eS ig(e).n to be ‘1’. The above encoding technique introduces
some parameters, such as M, m, N and n. We discuss the param-
eter settings in Appendix D. Figure 10(a) (given in Appendix C)

shows a running example of edge signatures. Considering an edge
(hasName,“Abraham Lincoln”), we first map the edge label “has-
Name” into a bitstring of length 12, and then map the vertex label
“Abraham Lincoln” into a bitstring of length 16.

DEFINITION 4.2. Given a class or entity vertex v in the RDF
graph, the vertex signature vS ig(v) is formed by performing bit-
wise OR operations over all its adjacent edge signatures. Formally,
vS ig(v) is defined as follows:

vS ig(v) = eS ig(e1)|......|eS ig(en)

where eS ig(ei) is the edge signature for edge ei adjacent to v and
“|” is the bitwise OR operation.

Considering vertex 005 in Figure 1(b), there are four adjacent
edges. We can encode each adjacent edge by its edge signature, as
shown in Figure 10(a) (given in Appendix C). A vertex signature
is defined in Definition 4.2. Figure 10(b) shows the signature of
vertex 005.

DEFINITION 4.3. Given an RDF graph G, its corresponding
data signature graph G∗ is induced by all entity and class vertices
in G together with the edges whose endpoints are either entity or
class vertices. Each vertex v in G∗ has its corresponding vertex
signature vS ig(v) (defined in Definition 4.2) as its label. Given
an edge −−−→v1v2 in G∗, its edge label is also a signature, denoted as
S ig(−−−→v1v2), to denote the property between v1 and v2.

Note that we adopt the same hash function in Definition 4.1 to
define S ig(−−−→v1v2). Specifically, we set m out of M bits in S ig(−−−→v1v2)
to be ‘1’ by some string hash functions. Figure 3 shows an example
of data signature graph G∗.

Actually, we can also encode the query graph Q by an analo-
gous method. Specifically, considering an entity or class vertex v
in Q, for each adjacent edge pair e(eLabel, nLabel) of v in Q, we
encode e into a bitstring eS ig(e) according to Definition 4.1. Note
that, if the adjacent neighbor vertex of v is a parameter vertex, we
set eS ig(e).n to be a signature with all zeros; if the adjacent neigh-
bor vertex of v is a wildcard vertex, we only consider the substring
without “wildcard” in the label. For example, in Figure 2(a), we
can only encode substrings “02-12” and “04-15” for the wildcard
vertices “*02-12*” and “*04-15*”, respectively. The vertex signa-
ture vS ig(v) can be obtained by performing bitwise OR operations
over all adjacent edge signatures.

Given a query graph Q, we can obtain a query signature graph
Q∗ induced by all entity and class vertices in Q together with all
edges whose endpoints are also entity or class vertices. Each vertex
v in Q∗ is a vertex signature vS ig(v), and each edge −−−→v1v2 in Q∗ is
associated with an edge signature S ig(−−−→v1v2). Figure 3 shows Q∗

that corresponds to query Q3 in Figure 2(b).
DEFINITION 4.4. Consider a data signature graph G∗ and a

query signature graph Q∗ that has n vertices {v1, ..., vn}. A set of n
distinct vertices {u1, ..., un} in G∗ is said to be a match of Q∗, if and
only if the following conditions hold:

1. vS ig(vi)&vS ig(ui) = vS ig(vi), i = 1, ..., n, where ‘&’ is the
bitwise AND operator.

2. If there is an edge from vi to v j in Q∗, there is also an edge
from ui to u j in G∗.

Note that, each vertex u (and v) in data (and query) signature
graph G∗ (and Q∗) has one vertex signature vS ig(v). For the sim-
plicity of symbols, we use u (and v) to denote vS ig(u) in G∗ (and
vS ig(v) in Q∗) when the context is clear.

Given an RDF graph G and a query graph Q, their correspond-
ing signature graphs are G∗ and Q∗, respectively. The matches of

485

FIGURE 2.14: gStore: Adjacency List Table [114]

?name

?m

02-12 *04-15*

BornOnDate DiedOnDate

hasName

(a) Query Q2

?m ?city

FoundYear

1718

bornIn

bornOnDate

1976
?name

hasName

(b) Query Q3

Figure 2: Query Graphs

2. PRELIMINARIES
RDF data are a collection of triples denoted as SPO (subject,

property, object), where subject is an entity or a class, and property
denotes one attribute associated to one entity or a class, and object
is an entity, a class, or a literal value. According to the RDF stan-
dard, an entity or a class is denoted by a URI (Uniform Resource
Identifier). For example, in Figure 1, “http://en.wikipedia.org/wiki/
United States” is an entity, “http://en.wikipedia.org/wiki/Country”
is a class, and “United States” is a literal value. In this work, we
will not distinguish between an “entity” and a “class” since we have
the same operations over them. RDF data can also be modeled as
an RDF graph, which is formally defined as follows:

DEFINITION 2.1. A RDF graph is denoted as G = 〈V, LV , E,
LE〉, where (1) V = Vc ∪ Ve ∪ Vl is a collection of vertices that
correspond to all subjects and objects in RDF data, where Vc, Ve,
and Vl are collections of class vertices, entity vertices, and literal
vertices, respectively. (2) LV is a collection of vertex labels. Given
a vertex v ∈ Vl, its vertex label is its literal value. Given a vertex
v ∈ Vc∪Ve, its vertex label is its corresponding URI. (3) E = (v1, v2)
is a collection of directed edges that connect the corresponding
subjects and objects. (4) LE is a collection of edge labels. Given
an edge e ∈ E, its edge label is its corresponding property.

Figure 1(b) shows an example of an RDF graph. The vertices
that are denoted by boxes are entity or class vertices, and the oth-
ers are literal vertices. A SPARQL query Q is also a collection
of triples. However, some triples in Q have parameters or wild-
cards. In Q2 (in Section 1), “?m” is a parameter and “?dd” in
FILTER(regx(?dd,“04-15”)) is called a wildcard. Thus, as shown in
Figure2(a), we can rewrite “?dd” and FILTER(regx(?dd,“04-15”))
as “*04-15*”.

DEFINITION 2.2. A query graph is denoted as Q = 〈V, LV , E, LE〉,
where (1) V = Vc ∪ Ve ∪ Vl ∪ Vp ∪ Vw is collection of vertices that
correspond to all subjects and objects in a SPARQL query, where
Vp and Vw are collections of parameter vertices and wildcard ver-
tices, respectively, and Vc and Ve and Vl are defined in Definition
2.1. (2) LV is a collection of vertex labels. For a vertex v ∈ Vp,
its vertex label is φ. The vertex label of a vertex v ∈ Vw is the sub-
string without the wildcard. A vertex v ∈ Vc ∪ Ve ∪ Vl is defined in
Definition 2.1. (3) E and LE are defined in Definition 2.1.

Figure 2(a) shows a query example that corresponds to Example
2. “*02-12*” is a wildcard vertex, and its label is “02-12”. “?m” is
a parameter vertex and its label is φ.

DEFINITION 2.3. Consider an RDF graph G and a query graph
Q that has n vertices {v1, ..., vn}. A set of n distinct vertices {u1, ..., un}
in G is said to be a match of Q, if and only if the following condi-
tions hold:

1. If vi is a literal vertex, vi and ui have the same literal value;

2. If vi is an entity or class vertex, vi and ui have the same URI;

3. If vi is a parameter vertex, there is no constraint over ui;

4. If vi is a wildcard vertex, vi is a substring of ui and ui is a
literal value.

5. If there is an edge from vi to v j in Q with the property p, there
is also an edge from ui to u j in G with the same property p.

Given a query graph Q2 in Figure 2(a), vertices (005,009,010,011)
in RDF graph G form a match of Q2. Answering a SPARQL query
is equivalent to finding all matches of its corresponding query graph
in RDF graph.

DEFINITION 2.4. (Problem Definition) Given a query graph Q
over an RDF graph G, find all matches of Q over G according to
Definition 2.3.

3. OVERVIEW OF gStore
Our general framework consists of both offline and online pro-

cesses. During offline processing, we first represent an RDF dataset
by an RDF graph G and store it by its adjacency list table T , as
shown in Figure 4. Then, we encode each entity and class vertex
into a bitstring (called vertex signature). The encoding technique
will be discussed in Section 4. According to RDF graph’s structure,
we link these vertex signatures to form a data signature graph G∗,
in which, each vertex corresponds to a class or an entity vertex in
the RDF graph, as shown in Figure 3. Specifically, G∗ is induced
by all entity and class vertices in G together with the edges whose
endpoints are either entity or class vertices. At run time, we can
also represent a SPARQL query by a query graph Q and encode
it into a query signature graph Q∗. Then, finding matches of Q∗

over G∗ leads to candidates (denoted as CL). Finally, we verify
each candidate by checking adjacency list table T . Note that, the
matches of Q over G are denoted as RS .

Figure 3 shows an example of a data signature graph G∗, which
corresponds to RDF graph G in Figure 1(b). Note that each entity
and class vertex in G is encoded into a signature. We also encode
query Q3 (in Figure 2(b)) into a query signature graph Q∗, as shown
in Figure 3. There is only one match of Q∗ over G∗, that is CL =
{(001, 002)}. Finally, by checking the adjacency list T (in Figure
4), we can find that (001, 002) is also a match of Q over G.

0010 1000 1000 0100

1000 0001

0001 1000

0000 0001

001 002

003

004
005

1000 1000
006

0001 0100

008

0000 1000 1000 0000

Query Signature Graph

Data Signature Graph

0100 0100
007

*Q

*G

10000

00010

01000

00010

0010000010

00001

00010

10000

Figure 3: Signature Graphs

Finding matches of Q∗ over G∗ is known to be NP-hard since it
is analogous to subgraph isomorphism. Therefore, we propose an
index and filtering strategy to reduce the search space over which
we do matching. Reducing the search space has been considered in
other works as well (eg. [17, 24]).

According to this framework, there are two issues to be addressed.
First, the encoding technique should guarantee that there are no
no-false-negatives, i.e., RS ⊆ CL. Second, an efficient subgraph
matching algorithm is required to find matches of Q∗ over G∗. To
address the first issue, we propose a coding technique in Section 4.
For the second issue, we design novel index structures (called VS
and VS∗-trees) and query algorithms in Sections 5 and 6.

4. STORAGE SCHEME AND ENCODING
TECHNIQUE

We propose a graph-based storage scheme for RDF data. Specif-
ically, we store an RDF graph G using a disk-based adjacency list

484

FIGURE 2.15: gStore: Signature Graphs [114]

Das et al., in their system called gStore [114], organize data in adjacency list tables.

Each vertex is represented as an entry in the table with a list of outgoing edges and

neighbors (Figure 2.14). The entries take the following form [vID,vLabel,adjList],

where vID is the ID of the vertex, vLabel is an URI and adjList is a list of outgoing

edges and neighbors, which in fact results in shapes that are similar to the atoms pro-

posed in TripleT. As a following step, a bitstring signature is assigned to each vertex

(seeFigure 2.15).

Brocheler et al. [24] propose a system called DOGMA. Their approach is based on a

balanced binary tree where each node is located on one disk page. Since the page size

39

4 M. Bröcheler, A. Pugliese, V.S. Subrahmanian

1. Each node in DR equals the size of a disk page and is labeled by a graph.
2. DR is balanced.
3. The labels of the set of leaf nodes of DR constitute a partition of GR.
4. If node N is the parent of nodes N1, N2, then the graph GN labeling node N is a

k-merge of the graphs GN1 , GN2 labeling its children.
Note that a single RDF database can have many DOGMA indexes.
Example 2. Suppose k = 4. A DOGMA index for the RDF graph of Fig. 1(a) might
split the graph into the 8 components indicated by dashed lines in Fig. 1(a) that become
the leaf nodes of the index (Fig. 2). Consider the two left-most leaf nodes. They can be
4-merged together to form a parent node. Other leaf nodes can also be merged together
(due to space constraints, the results of k-merging are not shown in the inner nodes). �

1

3

2
4

Alice
Nimber

Senate
MD

Term
10/12/94

Has Role

For Office

Carla
Bunes

Female

A0056

Term
11/06/90

gender

hasRoleTax
Code

A2187

B0744

A0342

subject

amendmentTo

1

3

2
4

1

3

2
4

1

3

2
4

B1432

John
McRie

A0772

Term
10/02/94

hasRole

sponsor

IL

forOffice

Jeff
Ryser

Male

Bill
B0045

US
Senate

Term
10/21/94

gender

hasRole

sponsor

Keith
Farmer

A1232

Term
10/02/94

Has Role

sponsor
Peter

Traves

Bill
B0532

Senate
NY

A1589

Term
11/10/90

For Office
sponsor

amendmentTo

1

3

2
4

1

3

2
4

1

3

2
4

Pierce
Dickes

Health
Care

A0467

Term
10/12/94

sponsor

subject

Has Role

N1 N2

Fig. 2. A DOGMA index for the RDF database of Fig. 1(a)

Even though many different DOGMA indexes can be constructed for the same RDF
database, we want to find a DOGMA index with as few “cross” edges between sub-
graphs stored on different pages as possible. In other words, if node N is the parent
of nodes N1, N2, then we would like relatively fewer edges in R between some node
in GN1

and some node in GN2
. The smaller this number of edges, the more “self-

contained” nodes N1, N2 are, and the less likely that a query will require looking at
both nodes N1 and N2. In the description of our proposed algorithms, we employ an
external graph partitioning algorithm (many of which have been proposed in the liter-
ature) that, given a weighted graph, partitions its vertex set in such a way that (i) the
total weight of all edges crossing the partition is minimized and (ii) the accumulated
vertex weights are (approximately) equal for both partitions. In our implementation, we
employ the GGGP graph partitioning algorithm proposed in [3].

Fig. 3 provides an algorithm to build a DOGMA index for an RDF graph GR. The
BuildDOGMAIndex algorithm starts with the input RDF graph, which is set to G0.
It assigns an arbitrary weight of 1 to each vertex and each edge in G0. It iteratively
coarsens G0 into a graph G1 that has about half the vertices in G0, then coarsens G1

100

FIGURE 2.16: DOGMA: Index [24]

is fixed, the size of the subgraph located on a page is limited also. There can be many

different indexes built for the same RDF database; the authors of DOGMA focuse on

minimizing potential cross edges between subgraphs located on different pages. Sup-

posing we have two nodes N1 and N2, the fewer cross edges we have, the more inde-

pendent the nodes become. When answering a query, we will most probably not have

to open/read both of those subgraphs (see Figure 2.16).

To partition graphs, the authors use the algorithm proposed in [75]. Their algorithm

takes as input a weighted graph and partitions it in the way that the total weight of cross

edges (between subgraphs) is minimized and the sum of the weights in each subgraph

is approximately equal. They start by assigning a weight of 1 to each vertex and edge

in an RDF graph and then coarsen the graph into a subgraph so that the latter contains

about half of the vertices from the former, and so on with each of the subgraphs until

each of the subgraphs has no more than the predefined number of vertices (i.e., to fit

into a disk page). The coarsening algorithm randomly picks one vertex (v), then selects

a maximally-weighted node (m). It merges the neighbors of the node m and m itself

into one node, updates the weights and removes v. Edges from m to its neighbors are

also removed. This process is rerun until the subgraph contains half or less vertices as

the initial graph. Then, the index is built for all subgraphs.

40

Algorithm 3 Optimized Query Algorithm Over VS∗-tree, VS∗-
query
Require: Input: a query signature graph Q∗ with n vertices vi, i = 1, ..., n,

and a VS∗-tree.
Output: CL: all matches of Q∗ over G∗.

1: Employ the method in Section B.1 to find the I-th level (of VS∗-tree)
that has the maximal estimated pruning power with regard to Q∗.

2: for each vertex vi in Q∗ do
3: Employ the inclusion method of S-tree over VS∗-tree down to GI to

find matching nodes of vi in GI , denoted as M(vi,GI).
4: Find all summary matches of Q∗ over GI by calling Algorithm 2 from

M(v1,GI) ! ! M(vn,GI), which are pushed into queue H.
5: while H " φ do
6: Pop one summary match from H, denoted as J.
7: Find all valid child states of J by calling Algorithm 2.
8: if these valid child states reaches leaf entries then
9: Insert them into CL

10: if these valid child states do not reach the leaf entries then
11: Push them into queue H
12: Report CL

C. ENCODING AND S-TREE
Figure 10 shows how to assign a vertex signature to a vertex in

a RDF graph. A sample of S-tree is given in Figure 11. In order to
build VS-tree, we need to introduce super edges between interme-
diate nodes. Figure 12 shows how to obtain super edge signatures.

(hasName, Abraham Lincoln)

0010 0010 0000 1000 0010 0110 1001

(BornOnDate, 1809-02-12)

0100 0010 0010 0100

(DiedOnDate, 1865-04-15)

1000 1000 0010 1000

(DiedIn, y:Washington_D.C)

0001 0100 0100 0010

().eSig e e ().eSig e n

0010 0000 0010

0000 0010 1000

0010 1000 0000

OR 1010 1010 1010 1100 1110 0110 1111

().vSig v e ().vSig v n

Vertex 005

(a) (b)

Figure 10: The Encoding Technique

0010 1000
1000 0100

001
002

1000 0001

003

0100 0100007
0001 0100

0080000 0001

005
1000 1000

006

0001 1000
004

0010 1001 1100 0100 1001 0101 1001 1000

1110 1101 1001 1001
2

1d 2

2d

3

1d
3

2d 3

3d 3

4d

2

1d 1111 11 01

Figure 11: S-tree

D. PARAMETER SETTING
As discussed earlier, we introduce some parameters in our cod-

ing methods and indexing structures. In this subsection, we discuss
how to set up these parameters to optimize query processing.

D.1 M and m
Given a vertex u in the RDF graph, we encode each edge label

(eLabel) adjacent to u into a bitstring eS ig(e).e with length M, and
set m out of M bits to be ‘1’. We obtain vS ig(u).e by performing
bitwise OR over all eS ig(e).e. Analogous to signature files, there

001 002

007005

10000

00010

3

1d 3

2d
10010

00010

10000OR

10010

Figure 12: Building Super Edges

!" #" "$ %&" %"" !#%

!''

&''

(''

)''

*+
,-

./
0

12
-/

34
5

/6
78

-9
:

;<;

=0> 8?--

(a) Yago

!" #" "$ %&" %"" !#%

%''

!''

@''

&''

#''

(''

$''

*+
,-

./
0

12
-/

34
5

/6
78

-9
:

;<;

=0> 8?--

(b) DBLP
Figure 13: VS∗-tree Index Size VS. N

!" #" "$ %&" %"" !#%

!

&

(

)

./%'&

A
B+

,1
,B

8-
/0

12
-/

C

;<;

0 D%
0 D!
0 D@

(a) Yago

!" #" "$ %&" %"" !#%
%'!

%'&

%'(

A
B+

,1
,B

8-
/0

12
-/

C

;<;

0 D%
0 D!
0 D@

(b) DBLP
Figure 14: Candidate Size X VS. |N|

may exist the “false drop” problem [8]. For example, given a ver-
tex v in query graph Q, all edge labels adjacent to v are denoted as
Ad jEdges(v,Q). We also use Ad jEdges(u,G) to denote all edge
labels adjacent to u in G. If Ad jEdges(v,Q) # Ad jEdges(u,G) ∧
v&u = v, we say that a false drop has occurred. v&u = v means that
u is a candidate match v. However, Ad jEdges(v,Q) # Ad jEdges(u,
G) means that u cannot match to v. Obviously, the key issue is how
to reduce the number of false drops.

According to a theoretical study [8], the probability of false drops
can be quantified by the following equation.

Pf alse drop = (1 − e−
|Ad jEdges(v,Q)|∗m

M)m∗|Ad jEdges(u,G)| (3)

where |Ad jEdges(v,Q)| is v’s degree in Q, |Ad jEdges (u,G)| is u’s
degree in G, M is the length of bitstring, and m out of M bits are
set to be ‘1’ in hash functions.

Given an RDF graph and query logs, it is straightforward to esti-
mate the average values for |Ad jEdges(v,Q)| and |Ad jEdges(u,G)|.
When Pf alse drop is fixed, we can employ Equation 3 to set up m
and M. In Yago, the average value for |Ad j Edges(u,G)| is 10,
and the average value for |Ad jEdges(q,Q)| is 3, while |Ad jEdges
(u,G)| = 20 and |Ad jEdges(q,Q)| = 3 in DBLP. We set up m = 2
and M = 97 in both Yago and DBLP. In this case, according to
Equation 3, Pf alse drop < 1.0 × 10−10.

D.2 N and n
Actually, we have the same false drop problems in comparing

vS ig(q).n with vS ig(v).n. Different from setting m and M, it is
quite difficult to quantify the probability of false drops when com-
paring vS ig(q).n and vS ig(v).n. Therefore, we adopt the following
method, using the “n-gram” technique. It has been experimentally
determined that n=3 works well [10].

492

FIGURE 2.17: gStore: S-tree [114]

2.2.3.2 Indexing

Das et al. build an S-tree for all vertices in their adjacency list table to reduce the search

space (Figure 2.17). The tree leafs correspond to vertices from the initial graph (G*),

and each intermediate (parent) node is formed by superimposing all children signatures

(by performing bitwise OR operation). However, S-trees cannot support multi-way join

processing; to solve this issue, the authors propose a VS-tree extension. Given an S-tree,

leafs are linked according to the initial graph, and new edges are introduced depending

on whether certain leafs are connected in G*. Specifically, two leafs in S-tree (001 and

002 in Figure 2.17) are linked if there is an edge in G* between vertices corresponding

to them. On the upper level in S-tree, super-edges are introduced between nodes if there

is at least one connection between the children of those nodes. In other words, if there

is a link between two leafs which does not share a parent, a link between their parents

is then created. Bitwise “O” operations over connecting edge labels of the children are

performed to assign labels to such super-edges (see Figure 2.18).

In the approach proposed by Brocheler et al., the storage model itself is an index mostly,

though the authors also propose two additional indexes to help pruning the result can-

didates. The DOGMA internal partition distance (IPD) index stores, for each vertex

v in node N, the distance to edge of the subgraph corresponding to N. During query

41

Q over G are denoted as RS , and the matches of Q∗ over G∗ are
denoted as CL.

THEOREM 4.1. RS ⊆ CL holds.

5. INDEXING STRUCTURE AND QUERY
ALGORITHM

The key problem to be addressed is how to find matches of Q∗

(query signature graph) over G∗ (data signature graph) efficiently.
A straightforward method can work as follows: first, for each ver-
tex vi ∈ V(Q∗), we find a list Ri = {ui1 , ui2 , ..., uin }, where vi&ui j

= vi, ui j ∈ V(G∗), and ui j ∈ Ri. Then, we perform a multi-way
join over these lists Ri to find matches of Q∗ over G∗ (finding CL).
Actually, the first step (finding Ri) is a classical inclusion query [7].

Given a set of objects with set-valued attributes, an inclusion (or
subset) query searches for all objects containing certain attribute
values [20]. Usually, signatures are used to indicate the presence
of individuals in sets. Therefore, we can represent a set of objects
with set-valued attributes as a set of signatures {si} and an inclusion
query as a query signature q. An inclusion (or subset) query is to
find all signature si, where q&si = q. In order to reduce the search
space, S-tree [7], a height-balanced tree, is proposed to organize all
signatures {si}. Each intermediate node is formed by superimposing
all child signatures in S-tree. Therefore, we can employ a S-tree [7]
to support the first step efficiently, i.e., finding Ri. An example of
S-tree is given in Figure 11 of Appendix C.

However, S-tree cannot support the second step (i.e. a multi-
way join), which is NP-hard as discussed earlier. Although many
subgraph matching methods have been proposed (e.g., [17, 24]),
they are not scalable to very large graphs. Therefore, we propose
new index structures for a large data signature graph G∗.

5.1 Indexing Structures–A Simple Version
In this subsection, we propose a simple method to build a VS-

tree (vertex signature tree). Although it is not optimized for query
performance, it illustrates the main idea of our methods.

Given a data signature graph G∗, we first build a S-tree over all
vertex signatures in G∗ (i.e.,V(G∗)). S-tree is a classical height bal-
anced tree that can support inclusion queries efficiently. Given a
query signature q and a set of data signatures {si}, an inclusion
query is to find all data signatures si, where q&si = q. In our
problem, each leaf entry of the S-tree is a vertex signature in G∗.
Interested readers can refer to [7] for details of the S-tree.

As mentioned earlier, S-tree cannot support the second step (i.e.,
multi-way join processing) efficiently. The proposed VS-tree sup-
ports the second step for finding matches of Q∗ over G∗. The intu-
ition behind VS-tree is as follows: Based on a S-tree, we can build
a multi-resolution summary graph, which can be used to reduce the
search space of subgraph query processing (as discussed in Theo-
rem 5.1). We adopt a bottom-up strategy to build a VS-tree.

First, a S-tree is built over all vertex signatures in G∗, namely,
each leaf entry of S-tree corresponds to one vertex signature in G∗.
Then, we link these leaf entries according to G∗’s structure. Specif-
ically, given two leaf entries d1 and d2 in a S-tree, we introduce an
edge between them, if and only if there is an edge between u1 and
u2 in G∗, where d1 (d2) corresponds to u1 (u2) in G∗. We also intro-
duce an edge signature S ig(−−−→v1v2) (Definition 4.3) as the edge label
of
−−−→
d1d2 in a VS-tree. A running example is given in Figure 5.
Second, given two leaf nodes dI

1 and dI
2 in the S-tree, we intro-

duce a super edge from dI
1 to dI

2, if and only if there is at least one
edge from d1’s children (i.e., leaf entries) to d2’s children. Specifi-
cally, if there are n (n > 1) edges from dI

1’s children to dI
2’s children

in the VS-tree, we introduce a super edge from dI
1 to dI

2. Further-

more, we assign an edge label for the edge
−−−→
dI

1dI
2 by performing

bitwise “OR” over these n edge labels from d1’s children to d2’s
children. Figure 12 (in Appendix C) illustrates the process. Note
that, we can also introduce a self-edge for a leaf node dI

1, if there is
at least one edge from one child of dI

1 to another child of dI
1. The

above process is iterated until the root of the VS-tree is reached.

0010 1000

1000 0100 1000 0001

0100 0100 0001 0100
0000 0001

1000 1000

0001 1000

0010 1001

1100 0100
1001 0101

1001 1000

1110 1101 1001 1001

1111 1101

1G

2G

3G

*G

2

1d 2

2d

3

2d

3

3d

3

4d

1

1d

10000
00010

01000

00010

00100

00010

00001

00010

3

1d 10010

00001

00010

01000

00010
00010

00100

00110

01011

10010

11111

DiedIn 00001

Rdf:type 00010

hasCapital 00100

LocatedIn 01000

bornIn 10000

Super Edge

Parent-Child Relation

Hash Function:

001

005

002

007

003

001

008

004

006

Figure 5: VS-tree

Figure 5 shows a running example of the VS-tree over G∗ in
Figure 3. Note that, we use dI

i to denote one node in the I-th level
of the VS-tree, which corresponds to the same node in the S-tree
(Figure 11). We use dI

i .S ig to denote the signature associated with
node dI

i . For simplicity, we use dI
i to denote dI

i .S ig when the context
is clear. The I-th level of the VS-tree is a summary graph, denoted
as GI , which is formed by all nodes at the I-th level together with
all edges between them in the VS-tree.

DEFINITION 5.1. Consider a query signature graph Q∗ with n
vertices vi (i=1,...,n) and a summary graph GI in the I-th level of
VS-tree. A set of nodes {dI

i } (i = 1, ..., n) at GI is called a summary
match of Q∗ over GI, if and only if the following conditions hold:

1. vS ig(vi)&dI
i .S ig = vS ig(vi), i = 1, ..., n;

2. For any edge −−−→v1v2 in Q∗, there must exist a super edge
−−−→
dI

1dI
2

in GI and S ig(−−−→v1v2)&S ig(
−−−→
dI

1dI
2) = S ig(−−−→v1v2).

Note that, a summary match is not an injective function from {vi} to
{dI

i }, namely, dI
i can be identical to dI

j (i ! j). For example, given a
query signature graph Q∗ (in Figure 3) and a summary graph G3 of
VS-tree (in Figure 5), we can find one summary match {(d3

1 , d
3
2)}.

An interesting finding is that summary matches can be used to re-
duce the search space for subgraph search over G∗.

5.2 Query Algorithm–A Simple Version
In this section, we discuss how to find matches of Q∗ over G∗

using a VS-tree. We employ a top-down search strategy over the
VS-tree to find matches of Q∗ over G∗. According to Theorem 5.1,
the search space at the lower level of the VS-tree is bounded by
the summary matches over the upper level. Consequently, we can
reduce the total search space.

THEOREM 5.1. Given a query signature graph Q∗, a data sig-
nature graph G∗ and VS-tree built over G∗:

486

FIGURE 2.18: gStore: VS-tree [114]

execution, for two vertices (v, u) the algorithm looks for nodes for which the ver-

tices belong (N!=M). N and M are at the same level of the tree and closest to the

root. If such nodes do not exist, because the vertices are in the same leaf node of

the tree, then the distance between them is set to 0, otherwise it is set to the maximal

distance from each of them to the border of the subgraph the vertex belongs to (for-

mally: d(u, v) = max(ipd(v,N), ipd(u,M))). The idea behind the DOGMA external

partition distance (EPD) index is to maintain distances to other subgraphs. For each

lowest-level subgraph, a color is assigned. For each vertex and color, the shortest dis-

tance from v to a subgraph colored with c is stored. In Figure 2.19 we illustrate how

this method can be used to further prune result candidates. Basically, if the distance to

the subgraph where a candidate lies is bigger than the distance between constant and

variable vertices, the candidate can be pruned.

42
2 M. Bröcheler, A. Pugliese, V.S. Subrahmanian

Carla
Bunes

?v1

?v2

?v3

Male

Health
Care

sponsor

sponsor

gender

amendmentTo

subject

(a) (b)

Fig. 1. Example RDF graph (a) and query (b)

tries to answer this very simple query against this very tiny database will see that it
takes time to do so, even for a human being!

In this paper, we propose a graph-based index for RDF databases called DOGMA,
that employs concepts from graph theory to efficiently answer queries such as that
shown above. DOGMA is tuned for scalability in several ways. First, the index itself
can be stored on disk. This is very important. From experiences in relational database
indexing, it is clear that when the data is large enough to require disk space, the index
will be quite large and needs to be disk resident as well. DOGMA, defined in Section 3,
is the first graph-based index for RDF that we are aware of that is specifically designed
to reside on disk. We define the DOGMA data structure and develop an algorithm to
take an existing RDF database and create the DOGMA index for it. In Section 4, we
develop algorithms to answer graph matching queries expressible in SPARQL [2] (we
emphasize that we do not claim DOGMA supports all SPARQL queries yet). Our first
algorithm, called DOGMA basic, uses the index in a simple manner. Subsequently, we
provide the improved algorithm DOGMA adv and two extensions of the index called
DOGMA ipd and DOGMA epd, that use sophisticated pruning methods to make the
search more efficient without compromising correctness. Third, in Section 5, we show
the results of an experimental assessment of our techniques against four competing RDF
database systems (JenaTDB, Jena2, Sesame2, and OWLIM). We show that DOGMA
performs very well compared to these systems.

2 Preliminaries
In this section, we briefly explain our notation. We assume the existence of a set S
whose elements are called subjects, a set P whose elements are called properties and a
set V whose elements are called values. Throughout this paper, we assume that S,P, V
are all arbitrary, but fixed sets. If s ∈ S, p ∈ P and v ∈ V , then (s, p, v) is called an

98

FIGURE 2.19: DOGMA: Example RDF graph (a) and query (b) [24]

2.2.3.3 Query Execution

In TripleT, [46] Fletcher et al. try to minimize complex subject-object joins which

in table-oriented systems involve many self-join operations. Thanks to their indexing

scheme, they can perform a join as a single look-up on a common join variable (same

value for subject and object) and then merge values related to the subjects and the ob-

jects.

To answer queries, gStore employs a top-down strategy over a VS-tree to find the match

of a query (Q*) over a graph (G*). First, the system finds the top-matches of Q* in the

VS-tree, and queues those matches. Then, it pops up one match from the queue and

expands it to its children (all descendant and the node) and for each of them checks if

it matches Q*. All valid matches are queued back again. This process is iterated until

reaching the leaf entries of the VS-tree. Finally, the system finds matches of Q* over

leaf entries in VS-tree, i.e., matches of Q* over G*.

To answer a query Brocheler et al. in DOGMA first retrieve for all variable vertices in

Q* a set of result candidates w.r.t the vertices (see Figure 2.20). The sets are initialized

with vertices that are connected to a defined vertex with a defined predicate. Then,

for the vertex with the lowest cardinality of result candidates, each candidate is set as

a value of the vertex, such that there is a new constant vertex. The algorithm can be

43
8 M. Bröcheler, A. Pugliese, V.S. Subrahmanian

Carla
Bunes

?v1

?v2

?v3Male

Health
Care

sponsor

sponsor

gender

amendmentTo

subject

Jeff Ryser
John McRie
Keith Farmer
Peter Traves
Pierce Dickes

Bill B0744
Amendment A0342
Amendment A0056

Bill B0045
Bill B0532
Bill B1432

Carla
Bunes

?v1

Bill
B0045

?v3Male

Health
Care

sponsor

sponsor

gender

amendmentTo

subject

Jeff Ryser

(a) (b)

Fig. 5. Execution of DOGMA basic on the example of Fig. 1

answer substitutions for query Q w.r.t. R. Moreover, the worst-case complexity of the
DOGMA basic algorithm is O(|VR||VQ ∩V AR|).
The algorithm is therefore exponential in the number of variables in the query in the
worst case. However, the algorithm is efficient in practice as we will show in Section 5.
Furthermore, we propose two extensions of the DOGMA index that improve its perfor-
mance.
4.2 The DOGMA adv Algorithm
The basic query answering algorithm presented in the previous section only uses “short
range” dependencies, i.e., the immediate vertex neighborhood of variable vertices, to
constrain their result candidates. While this suffices for most simple queries, consider-
ing “long range” dependencies can yield additional constraints on the result candidates
and thus improve query performance. For instance, the result candidates for v1 in our
example query not only must be immediate neighbors of “Carla Bunes”: in addition,
they must be at most at a distance of 2 from “Health Care”. More formally, let dR(u, v)
denote the length of the shortest path between two vertices u, v ∈ VR in the undirected
counterpart of a RDF graph GR, and let dQ(u, v) denote the distance between two ver-
tices in the undirected counterpart of a query Q; a long range dependency on a variable
vertex v ∈ VQ is introduced by any constant vertex c ∈ VQ with dQ(v, c) > 1.

We can exploit long range dependencies to further constrain result candidates. Let
v be a variable vertex in Q and c a constant vertex with a long range dependency on
v. Then any answer substitution θ must satisfy dQ(v, c) ≥ dR(θ(v), c) which, in turn,
means that {m | dR(m, c) ≤ dQ(v, c)} are result candidates for v. This is the core
idea of the DOGMA adv algorithm shown in Fig. 6, which improves over and extends
DOGMA basic. In addition to the result candidates sets Rv , the algorithm maintains
sets of distance constraints Cv on them. As long as a result candidates set Rv remains
uninitialized, we collect all distance constraints that arise from long range dependencies
on the variable vertex v in the constraints set Cv (lines 15-16 and 34-35). After the
result candidates are initialized, we ensure that all elements in Rv satisfy the distance
constraints in Cv (lines 17-18 and 37-38). Maintaining additional constraints therefore
reduces the size of Rv and hence the number of extensions to θ we have to consider
(line 23 onward).

DOGMA adv assumes the existence of a distance index to efficiently look up
dR(u, v) for any pair of vertices u, v ∈ VR (through function retrieveDistance), since

104

FIGURE 2.20: DOGMA: Execution of DOGMA basic [24]

rerun to prune result candidates for other vertices, and so on until the final result is

found. The basic algorithm presented above is efficient enough for simple queries on

neighboring vertices. Considering vertices located in different nodes, additional indices

to help prune the result candidates would be needed. The authors propose a second

algorithm, which verifies if two vertices are “in range”. Let v be a variable vertex with

set of result candidates, and c a constant vertex with a long range dependency on v. Then

any result candidate of v must not be further away from c than the distance between c

and v in the query (more formally d(v, c) >= d(T (v), s)). Any other candidate can

be pruned. While the result candidates are initialized, the algorithm ensures that each

element satisfies this constraint. To efficiently look up for a d(v, c), a distance index is

introduced through two lower-bound distance indexes (see Section 2.2.3.2).

2.3 Massively Parallel Processing for Linked Data

With ever larger data sets, distributing RDF data across multiple nodes becomes an im-

portant requirement. Instead of designing and implementing custom distributed RDF

storage systems, one approach is to reuse existing infrastructure like Hadoop MapRe-

duce and the Hadoop File System.

MapRedude is specifically designed to process large amounts of data. Processing RDF

data with MapReduce based on a relational table-like storage model can be very de-

manding due to possibly high numbers of joins in RDF queries. If the joins produce

large intermediate results, these must be distributed across the executor nodes requiring

additional storage and network traffic. However, the advantage of Hadoop MapReduce

44

54 P. Ravindra, H. Kim, K. Anyanwu

3.2 RAPID+: Integrating NTGA Operators into Pig

Data Structure for TripleGroups - RDFMap. Pig Latin data model supports a bag
data structure that can be used to capture a TripleGroup. The Pig data bag is imple-
mented as an array list of tuples and provides an iterator to process them. Consequently,
implementing NTGA operators such as filter, groupfilter, join etc. using this
data structure requires an iteration through the data bag which is expensive. For exam-
ple, given a graph pattern with a set of triple patterns TP and a data graph represented
as a set of TripleGroups TG, the groupfilter operator requires matching each triple
pattern in TP with each tuple t in each TripleGroup tg ∈ TG. This results in the cost
of the groupfilter operation being O(|TP |*|tg|*|TG|). In addition, representing
triples as 3-tuple (s, p, o) results in redundant s(o) components for subject (object)
TripleGroups. We propose a specialized data structure called RDFMap targeted at ef-
ficient implementation of NTGA operators. Specifically it enables, (i) efficient look-
up of triples matching a given triple pattern, (ii) compact representation of intermedi-
ate results, and (iii) ability to represent structure-label information for TripleGroups.
RDFMap is an extended HashMap that stores a mapping from property to object val-
ues. Since subject of triples in a TripleGroup are often repeated, RDFMap avoids this
redundancy by using a single field Sub to represent the subject component. The field
EC captures the structure-label (equivalence class mapped to numbers). Fig. 8. shows
the RDFMap corresponding to the Subject TripleGroup in Fig. 3 (a). Using this rep-
resentation model, a nested TripleGroup can be supported using a nested propMap
which contains another RDFMap as a value. The propMap provides a property-based
indexed structure that eliminates the need to iterate through the tuples in each bag. Since
propMap is hashed on the P component of the triples, matching a triple pattern inside
a TripleGroup can now be computed in time O(1). Hence, the cost of the groupfilter
operation is reduced to O(|P |*|TG|).

Fig. 8. RDFMap representing a subject TripleGroup

Implementing NTGA operators using RDFMap. In this section, we show how the
property-based indexing scheme of an RDFMap can be exploited for efficient imple-
mentation of the NTGA operations. We then discuss the integration of NTGA operators
into Pig.
StarGroupFilter. A common theme in our implementation is to coalesce operators
where possible in order to minimize the costs of parameter passing, and context switch-
ing between methods. The starGroupFilter is one such operator, which coalesces

FIGURE 2.21: RAPID: RDFMap representing a TripleGroup [101]

and HDFS is that both systems are established on proven infrastructure systems being

able to scale to thousands of nodes and almost arbitrary dataset sizes. As a consequence,

optimizing data storage and query execution becomes a challenging and interesting as-

pect of native RDF database systems. The goal of this section is to present systems that

leverage MapReduce and HDFS for large scale RDF storage and query execution.

2.3.1 Data Storage and Partitioning

Rohloff et al. in their work [101] propose a system called SHARD. While they do

not introduce any novel storage model, they nevertheless expect data to be stored in a

specific format (not ordinary triples). In the datafile, they expect each line to correspond

to a star-like shape centering around a subject and all edges from this node. The files

containing all the data is stored directly on HDFS without any specific partitioning

scheme, by exploiting the replication factor of the underlying distributed file system.

Kurt owns car0 livesIn Cambridge

car0 a car madeBy Ford madeIn Detroit

Detroit a city

Cambridge a city

The example above represents the following triples:

Kurt owns car0

Kurt livesIn Cambridge

car0 a car

car0 madeBy Ford

car0 madeIn Detroit

Detroit a city

Cambridge a city

45

!"#$%&'(")*"("+%#

*"("+%,
#%+-'(

.''/0"&&1&20

)$&20

/34%

5676189)*"("+%#9)$&20
:;6<6=99
)*"("+%#99*"("+%,99)$&2099>999
)$&2099999/34%99999.''/0"&&1&209>999999999
)$&2099999#%+-'(999!"#$%&'("999>9?

Figure 2: Example SPARQL Query.

If the RDF data is stored using a relational “triples” ta-
ble, SPARQL queries can be converted to SQL in a fairly
straightforward way, where the triples table is self-joined
for each SPARQL condition, using shared variable names
as the join equality predicate. For example, the SPARQL
query above can be converted to the following SQL:

SELECT A.subject, A.object
FROM triples AS A, triples AS B, triples AS C
WHERE B.predicate = "type" AND B.object = "footballClub"

AND B.subject = C.subject AND C.predicate = "region"
AND C.object = "Barcelona" AND C.subject = A.object
AND A.predicate = "manages"

A more complicated SPARQL query is presented as Ex-
ample 1 in the appendix.

In general, SPARQL graph patterns that involve paths
through the RDF graph convert to subject-object joins in
the SQL, and patterns that involve multiple attributes about
the same entity involve subject-subject joins in the SQL (the
above example has both types of joins). Although other
types of joins are possible, subject-subject and subject-object
joins are by far the most common.

3. SYSTEM ARCHITECTURE
As described in Section 2.2, SPARQL queries tend to take

the form of subgraph matching. This type of data access is
therefore the motivating use-case for which we are architect-
ing our system. RDF data is partitioned across a cluster of
machines, and SPARQL graph patterns are searched for in
parallel by each machine. Data may need to be exchanged
between machines in order to deal with the fact that some
patterns in the data set may span partition boundaries. We
use Hadoop to manage all parts of query processing that
require multiple machines to work together.

The high level architecture diagram is presented in Fig-
ure 3. RDF triples that are to be loaded into the system
get fed into the data partitioner module which performs a
disjoint partitioning of the RDF graph by vertex. As will be
described in the next section, we default to using a popular
open source graph partitioner that runs on a single machine
(our master node); for RDF datasets that are too large to
be partitioned by a single machine, we can plug in a dis-
tributed graph partitioning solution instead. The output of
the partitioning algorithm is then used to assign triples to
worker machines according to the triple placement algorithm
we will describe in the next section. Each worker machine
contains an installation of a pluggable state-of-the-art RDF-
store, and loads all triples it receives from the triple placer.

In order to increase the number of queries that are possible
to be run completely in parallel, it is beneficial to allow
some triples to be replicated on multiple machines. The data
replicator on each worker node determines which triples are
on the boundary of its partition, and replicates these triples

!"#$%&'()

*'(+)(,- *'(+)(,. *'(+)(,/

!"#$%&'() !"#$%&'()

0(123
41(&5&5'/)(

6(527)
4718)(

"1&1,41(&5&5'/)(

9:)(;,
4('8)%%)(

<1%&)(

=1>''2

"1&1
()27581&'(

"1&1
()27581&'(

"1&1
()27581&'(

?@@@@@@

Figure 3: System Architecture.

(according to the n-hop guarantee we present later) using a
Hadoop job after each new batch of triples are loaded.

The master node also serves as the interface for SPARQL
queries. It accepts queries and analyzes them closely. If it
determines that the SPARQL pattern can be searched for
completely in parallel by each worker in the cluster, then it
sends the pattern to each node in the cluster for processing.
If, however, it determines that the pattern requires some co-
ordination across workers during the search, it decomposes
the query into subgraphs that can be searched for in iso-
lation, and ships these subgraphs to the worker nodes. It
then hands off the rest of the query, including the query
processing needed to reconstruct the original query graph,
to Hadoop to complete.

The following sections describe the load and query steps in
detail. We assume that data is read-only after being loaded
(updates are left for future work).

4. DATA PARTITIONING
When data is partitioned across multiple machines, the

particular partitioning algorithm can make a large difference
in the amount of data that needs to be shipped over the
network at query time. Take the following example that
returns the names of the strikers that have played for FC
Barcelona:

SELECT ?name
WHERE { ?player type footballPlayer .

?player name ?name .
?player position striker .
?player playsFor FC_Barcelona . }

If data was partitioned using a simple hash partitioning
algorithm, it is trivial to perform it in parallel without any
network communication (except at the very end of the query
to collect results). In particular, if data was hash partitioned
by RDF subject (which, as described above, is how clustered
RDF-store implementations are generally designed), then it
is guaranteed that all triples related to a particular player
are stored on the same machine. Therefore, every machine
in the cluster can process the query (completely in parallel)
for the subset of players that had been hash partitioned to
that machine, and the results can be aggregated together
across machines at the end of the query.

The type of query that hash partitioning by subject excels
at are SPARQL queries that contain a graph pattern form-
ing a “star”, with a single center vertex (that is usually a

1125

FIGURE 2.22: MapReduce + RDF-3X: System Architecture[71]

Ravindra et al. implement their system (RAPID+) [100] on top of Apache Pig 6. They

leverage a nested HashMap called RDFMap. Data is grouped in TripleGroup (imple-

mented using a native bag data structure from Pig) around a subject which is a first-level

key in the map, i.e., the data is co-located for a shared subject which is a hash value in

the map. The nested element (i.e., the value from the previous map) (propMap) is a

hash map with predicates as keys and objects as values. Figure 2.21 shows an exam-

ple RDFMap. In fact, it forms a star-like substructures around subjects. They are in

addition indexed on the first level by subject and on the second level by predicate.

6https://pig.apache.org/

https://pig.apache.org/

46

Huang et al. [71] propose a hybrid solution combining a single node RDF-store (RDF-

3X, see above) and Hadoop MapReduce to provide horizontal scalability. To distribute

triples across nodes, they leverage the METIS graph partitioning system7. Hence, they

co-locate triples forming a subgraph (star-like structure) on a particular node. This en-

ables to maximize the number of operations performed in parallel on separate process-

ing nodes avoiding expensive centralized cross-nodes joins. All this allows reducing the

amount of data that is transferred over the network for intermediate results. Figure 2.22

shows the architecture of the system.

Data is loaded and partitioned on the master node while triples are distributed among

workers. On each node in the Hadoop cluster, there is an installation of the native RDF

store which receives and loads subsets of triples. The authors partition graph vertexes

so that each worked receives a subset of those vertexes that are close to each other in the

graph. Having all vertexes partitioned, the system assigns triples to worker in the way

that the triple is placed on the machine if its subject is among vertexes owned by the

worker. The process consist in two steps. First, the system divides vertices into disjoint

subsets. Then, it assigns triples to workers. Before partitioning vertices, the system

removes all triples where the predicate is rdf:type. Following this step, the system

prepares an input list of edges and vertices (an undirected graph) for METIS. As an

output from METIS, the system receives partitions of vertexes that are disjoint. Having

all vertexes partitioned, the system starts placing triples on nodes in a cluster. The

basic idea is to place a triple on a partition if its subjectis among the vertices assigned

to the partition; this forms 1-hop star-like subgraph. This can be extended to further

hops so that objects of triples are extended with triples considering them as subjects.

The triple placement can also be performed on an undirected graph such that triples

containing the vertex assigned to a partition as an object are also placed in it. Both

of these extensions are trade-offs between duplicating data on worker nodes and query

execution performance (the more extended the sub-graphs are, the less joins have to be

performed in the final step).

2.3.2 Query Execution

Ravindra et al. propose an intermediate algebra called Nested Triple Group Algebra

(NTGA) to optimize their query execution process [100]. This approach minimizes

the number of MapReduce cycles to answer the query. It also introduces algorithms to

7http://glaros.dtc.umn.edu/gkhome/views/metis

http://glaros.dtc.umn.edu/gkhome/views/metis

47

s1 :label o1 .
s1 :country o1.
s2 :vendor o2 .
(...)

SELECT
?vlabel ?prod ?price
where {

?v :label ?vlabel .
?v :country ?vcountry .

?o :vender ?v .
?o :price ?itsprice .
?o :delivDays ?days .
?o :product ?prod .

?r :reviewFor ?prod .
?r :rating1 ?rat1 .

FILTER (?days <= 2
&& ?vcountry = "US"
&& ?rat1 >= 4)
}

LOLoad

TripleStorage:
CoalescedLOFilter

LOCogroup

Structural Filter

LORDFJoin

LOForEach

LOStore

TripleStorage

(...)
(repeat above ones if required

a) SPARQL Query b) Logical Plan c) Physical/MapReduce Plan

POLocalRearrange

PORDFGenPack

Structural Filtering

Filter out incomplete TG

s1 :vendor o1
s1 :price o2
s1 :delivDay o3
s1 :product o4

PORDFJoinAnnotator

PORDFJoinPackage

POForEach

FIGURE 2.23: RAPID+: Query execution in [76]

postpone the decompression of intermediate results so they they can be kept in compact

form, thus reducing the number of I/O operations. The fundamental concept of NTGA

is a TripleGroup [99], which is a group of triples sharing the same subject or object

(star-like structure). Within one MapReduce operation, they pre-compute all possible

star substructures, thus materializing all possible first-hop joins. Having computed all

star-like structures, the system filters-out those stars that do not fulfill query constrains.

In the next step, if necessary, the system joins stars. Figure 2.23 shows an example

query and its execution plan. The first step (LOLoad) loads all data and at the same

time also applies value-based filters on the data to avoid processing irrelevant triples.

Then, during one Reduce operation, the LOCogroup operator groups triples and applies

constrains on the groups, such that all irrelevant “stars” are filtered out. The last step

in the flow is joining stars based on subjects or objects, which is achieved with the

LORDFJoin operator.

Rohloff et al. introduce, in their SHARD system, a clause iteration algorithm [101] the

main idea of which is to iterate over all clauses and incrementally bind variables and

satisfy constrains (Figure 2.24). During the first step, they identify all edges matching

to a clause and remove duplicates. The output collection consists of keys (which are

variable bindings from the clause) and NULL values. The following step identifies

48

Graph Data

Map: Assign variables for 1st clause
Reduce: Remove duplicates

Map:
1. Assign variables for next clause

2. Map past partial assignments, Key
on common variable

Reduce:

1. Join partial assignments on common
variable

2. Remove duplicates

Map: Filter or SELECT variables
Reduce: Remove duplicates

iterate
over

clauses

FIGURE 2.24: SHARD: A schema of the clause iteration algorithm [101]

edges matching to the remaining clauses (in the same way as previously). It also joins

them with sub-graphs corresponding to the previously matched edges. The final step

filters variables to obtain those requested in the SELECT clause. Algorithm 1 runs a

firstClauseMapReduce MapReduce job to perform the first step. As an output,

it returns sets of possible assignments to the variables of the first clause. boundVars

tracks variables that were bound during this step. For the following example query:

SELECT ?person WHERE {

?person :owns ?car .

?car :a :car .

?car :madeIn :Detroit .}

for example, variables ?person and ?car are bound and set to boundVars. The

iterating step runs the intermediateClauseMapReduce MapReduce job to per-

form the second step. It identifies triples matching to each clause (one by one) and

then performs joins over intermediate results of this step and all previous steps. For

instance, after the very first step, the system gets a set of bound variables <(?car

49

Algorithm 1 SHARD: Iteration algorithm [101].
Require: triples, query

1: mrOutput←− NULL
2: mrInput←− triples
3: firstClauseMapReduce(mrInput, mrOutput, query.clause(0))
4: boundV ars←− query.clause(0).getV ars()
5: for i← 1 to query.numClauses− 1 do
6: mrInput←− union(triples,mrOutput)
7: curV ars←− query.clause(i).getV ars()
8: comV ars←− intersection(boundV ars, curV ars)
9: intermediateClauseMapReduce(mrInput,mrOutput, query.clause(i), comVars)

10: end for
11: mrInput←− mrOutput
12: selectMapReduce(mrInput, mrOutput, query.select())
13: return mrOutput

car0), null>; after the first iteration, it gets a map of variables bound during the

second and first steps <(?car car0), (?person, Kurt)>. The reduce phase

combines those two and returns <(?car car0 ?person, Kurt)>.

Huang et al. [71] take advantage of their partitioning scheme and of their backend triple-

store. Queries are decomposed into chunks executed in parallel and then reconstructed

with MapReduce. They push as much of query processing as possible to the triplestore

while the remaining part is consolidated by Hadoop. The system divides queries into

two kinds. First, those that can be executed on a node, meaning that each node has

sufficient data to generate complete result tuples. The second kind of query has to be

decomposed into sub-queries executed on nodes, whose results are finally collected and

joined at the master node.

Chapter 3

An Empirical Evaluation of NoSQL
Systems to Manage Linked Data

In the previous chapter we presented in details the most significant scientific approaches

to manage Linked Data. In this chapter we show the results of an empirical evaluation

of different approaches to process Linked Data regrouped under the NoSQL umbrella,

they were not specifically tailored to handle Linked Data in the first place, though they

were adapted. Our choice of systems was based on two factors: (i) Developing and

optimizing a full-fledged Linked Data management layer on top of a NoSQL system

is a very time-consuming task. For our work, we selected systems that were already

in development; and (ii) we chose systems that represent a variety of NoSQL system

types: document databases (CouchDB), key-value/column stores (Cassandra, HBase),

and query compilation for Hadoop (Hive). In addition, we also provide results for

4store, which is a well-known and native RDF store. We use the notation (spo) or SPO

to refer to the subject, predicate, and object of the RDF model. Question marks denote

variables. All the systems evaluated in this chapter are available online 1.

3.1 Systems

We now turn to brief descriptions of the five systems used in our tests, focusing on the

modifications and additions needed to support RDF.

1http://ribs.csres.utexas.edu/nosqlrdf/

50

http://ribs.csres.utexas.edu/nosqlrdf/

51

3.1.1 4store

We use 4store2 as a baseline, native, and distributed RDF DBMS. 4store stores RDF

data as quads of (model, subject, predicate, object), where a model is analogous to a

SPARQL graph. URIs, literals, and blank nodes are all encoded using a cryptographic

hash function. The system defines two types of computational nodes in a distributed

setting: (i) storage nodes, which store the actual data, and (ii) processing nodes, which

are responsible for parsing the incoming queries and handling all distributed commu-

nications with the storage nodes during query processing. 4store partitions the data

into non-overlapping segments and distributes the quads based on a hash-partitioning

of their subject.

Schema
Data in 4store is organized as property tables [62]. Two radix-tree indices (called P

indices) are created for each predicate: one based on the subject of the quad and one

based on the object. These indices can be used to efficiently select all quads having

a given predicate and subject/object (they hence can be seen as traditional P:OS and

P:SO indices). In case the predicate is unknown, the system defaults to looking up all

predicate indices for a given subject/object.

4store considers two auxiliary indices in addition to P indices: the lexical index, called

R index, stores for each encoded hash value its corresponding lexical (string) represen-

tation, while the M index gives the list of triples corresponding to each model. Further

details can be found in [62].

Querying
4store’s query tool (4s-query) was used to run the benchmark queries.

3.1.2 Jena+HBase

Apache HBase3 is an open source, horizontally scalable, row consistent, low latency,

random access data store inspired by Google’s BigTable [27]. It relies on the Hadoop

Filesystem (HDFS)4 as a storage back-end and on Apache Zookeeper5 to provide sup-

port for coordination tasks and fault tolerance. Its data model is a column oriented,

2http://4store.org/
3http://hbase.apache.org/
4http://hadoop.apache.org/hdfs
5http://zookeeper.apache.org/

http://4store.org/
http://hbase.apache.org/
http://hadoop.apache.org/hdfs
http://zookeeper.apache.org/

52

sparse, multi-dimensional sorted map. Columns are grouped into column families and

timestamps add an additional dimension to each cell. A key distinction is that column

families have to be specified at schema design time, while columns can be dynamically

added.

There are a number of benefits in using HBase for storing RDF. First, HBase has a

proven track-record for scaling out to clusters containing roughly 1000 nodes.6 Sec-

ond, it provides considerable flexibility in schema design. Finally, HBase is well inte-

grated with Hadoop, a large scale MapReduce computational framework. This can be

leveraged for efficiently bulk-loading data into the system and for running large-scale

inference algorithms [108].

Schema
The HBase schema employed is based on the optimized index structure for quads pre-

sented by Harth et al. [63] and is described in detail in [48]. In this evaluation, we use

only triples so we build 3 index tables: SPO, POS and OSP. We map RDF URIs and

most literals to 8-byte ids and use the same table structure for all indices: the row key is

built from the concatenation of the 8-byte ids, while column qualifiers and cell values

are left empty. This schema leverages lexicographical sorting of the row keys, covering

multiple triple patterns with the same table. For example, the table SPO can be used to

cover the two triple patterns: subject position bound i.e. (s ? ?), subject and predicate

positions bound i.e. (s p ?). Additionally, this compact representation reduces network

and disk I/O, so it has the potential for fast joins. As an optimization, we do not map

numerical literals, instead we use a number’s Java representation directly in the index.

This can be leveraged by pushing down SPARQL filters and reading only the targeted

information from the index. Two dictionary tables are used to keep the mappings to and

from 8-byte ids.

Querying
We use Jena as the SPARQL query engine over HBase. Jena represents a query plan

through a tree of iterators. The iterators, corresponding to the tree’s leafs, use our HBase

data layer for resolving triple patterns e.g. (s ? ?), which make up a Basic Graph Pattern

(BGP). For joins, we use the strategy provided by Jena, which is indexed nested loop

joins. As optimizations, we pushed down simple numerical SPARQL filters i.e. filters

which compare a variable with a number, translating them into HBase prefix filters on

the index tables. We used these filters, together with selectivity heuristics [106], to

reorder subqueries within a BGP. In addition, we enabled joins based on ids, leaving
6see e.g.,http://www.youtube.com/watch?v=byXGqhz2N5M

http://www.youtube.com/watch?v=byXGqhz2N5M

53

the materialization of ids after the evaluation of a BGP. Finally, we added a mini LRU

cache in Jena’s engine, to prevent the problem of redundantly resolving the same triple

pattern against HBase. We were careful to disable this mini-cache in benchmarks with

fixed queries i.e. DBpedia, so that HBase is accessed even after the warmup runs.

3.1.3 Hive+HBase

The second HBase implementation uses Apache Hive7, a SQL-like data warehousing

tool that allows for querying using MapReduce.

Schema
A property table is employed as the HBase schema. For each row, the RDF subject is

compressed and used as the row key. Each column is a predicate and all columns reside

in a single HBase column family. The RDF object value is stored in the matching row

and column. Property tables are known to have several issues when storing RDF data

[2]. However, these issues do not arise in our HBase implementation. We distinguish

multi-valued attributes from one another by their HBase timestamp. These multi-valued

attributes are accessed via Hive’s array data type.

Querying
At the query layer, we use Jena ARQ to parse and convert a SPARQL query into

HiveQL. The process consists of four steps. Firstly, an initial pass of the SPARQL query

identifies unique subjects in the query’s BGP. Each unique subject is then mapped onto

its requested predicates. For each unique subject, a Hive table is temporarily created.

It is important to note that an additional Hive table does not duplicate the data on disk.

It simply provides a mapping from Hive to HBase columns. Then, the join conditions

are identified. A join condition is defined by two triple patterns in the SPARQL WHERE

clause, (s1 p1 s2) and (s2 p2 s3), where s1 6= s2. This requires two Hive tables to

be joined. Finally, the SPARQL query is converted into a Hive query based on the

subject-predicate mapping from the first step and executed using MapReduce.

7http://hive.apache.org/query

http://hive.apache.org/query

54

3.1.4 CumulusRDF: Cassandra+Sesame

CumulusRDF8 is an RDF store which provides triple pattern lookups, a linked data

server and proxy capabilities, bulk loading, and querying via SPARQL. The storage

back-end of CumulusRDF is Apache Cassandra, a NoSQL database management sys-

tem originally developed by Facebook [79]. Cassandra provides decentralized data stor-

age and failure tolerance based on replication and failover.

Schema
Cassandra’s data model consists of nestable distributed hash tables. Each hash in the

table is the hashed key of a row and every node in a Cassandra cluster is responsible

for the storage of rows in a particular range of hash keys. The data model provides

two more features used by CumulusRDF: super columns, which act as a layer between

row keys and column keys, and secondary indices that provide value-key mappings for

columns.

The index schema of CumulusRDF consists of four indices (SPO, PSO, OSP, CSPO)

to support a complete index on triples and lookups on named graphs (contexts). Only

the three triple indices are used for the benchmarks. The indices provide fast lockup for

all variants of RDF triple patterns. The indices are stored in a “flat layout” utilizing the

standard key-value model of Cassandra [78]. CumulusRDF does not use dictionaries to

map RDF terms but instead stores the original data as column keys and values. Thereby,

each index provides a hash based lookup of the row key, a sorted lookup on column keys

and values, thus enabling prefix lookups.

Querying
CumulusRDF uses the Sesame query processor9 to provide SPARQL query function-

ality. A stock Sesame query processor translates SPARQL queries to index lookups

on the distributed Cassandra indices; Sesame processes joins and filter operations on a

dedicated query node.

3.1.5 Couchbase

Couchbase is a document-oriented, schema-less distributed NoSQL database system,

with native support for JSON documents. Couchbase is intended to run in-memory

8http://code.google.com/p/cumulusrdf/
9http://www.openrdf.org/

http://code.google.com/p/cumulusrdf/
http://www.openrdf.org/

55

mostly, and on as many nodes as needed to hold the whole dataset in RAM. It has a built-

in object-managed cache to speed-up random reads and writes. Updates to documents

are first made in the in-memory cache, and are only later persisted to disk using an

eventual consistency paradigm.

Schema
We tried to follow the document-oriented philosophy of Couchbase when implementing

our approach. To load RDF data into the system, we map RDF triples onto JSON

documents. For the primary copy of the data, we put all triples sharing the same subject

in one document (i.e., creating RDF molecules), and use the subject as the key of that

document. The document consists of two JSON arrays containing the predicates and

objects. To load RDF data, we parse the incoming triples one by one and create new

documents or append triples to existing documents based on the triples’ subject.

Querying
For distributed querying, Couchbase provides MapReduce views on top of the stored

JSON documents. The JavaScript Map function runs for every stored document and

produces 0, 1 or more key-value pairs, where the values can be null (if there is no need

for further aggregation). The reduce function aggregates the values provided by the Map

function to produce results. Our query execution implementation is based on the Jena

SPARQL engine to create triple indices similar to the HBase approach described above.

We implement Jena’s Graph interface to execute queries and hence provide methods to

retrieve results based on triple patterns. We cover all triple pattern possibilities with

only three Couchbase views, on (?p?) (??o) and (?po). For every pattern that includes

the subject, we retrieve the entire JSON document (molecule), parse it, and provide

results at the Java layer. For query optimization, similar to the HBase approach above,

selectivity heuristics are used.

3.2 Experimental Setting

We now describe the benchmarks, computational environment, and system setting used

in our evaluation.

56

3.2.1 Benchmarks

3.2.1.1 Berlin SPARQL Benchmark (BSBM)

The Berlin SPARQL Benchmark[21] is built around an e-commerce use-case in which

a set of products is offered by different vendors and consumers are posting reviews

about products. The benchmark query mix emulates the search and navigation patterns

of a consumer looking for a given product. Three datasets were generated for this

benchmark:

• 10 million: 10,225,034 triples (Scale Factor: 28,850)

• 100 million: 100,000,748 triples (Scale Factor: 284,826)

• 1 billion: 1,008,396,956 triples (Scale Factor: 2,878,260)

3.2.1.2 DBpedia SPARQL Benchmark (DBPSB)

The DBpedia SPARQL Benchmark[88] is based on queries that were actually issued by

humans and applications against DBpedia. We used an existing dataset provided on the

benchmark website.10 The dataset was generated from the original DBpedia 3.5.1 with

a scale factor of 100% and consisted of 153,737,783 triples.

3.2.2 Computational Environment

All experiments were performed on the Amazon EC2 Elastic Compute Cloud infras-

tructure11. For the instance type, we used m1.large instances with 7.5 GiB of memory,

4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each), 850 GB of

local instance storage, and 64-bit platforms.

To aid in reproducibility and comparability, we ran Hadoop’s TeraSort [93] on a cluster

consisting of 16 m1.large EC2 nodes (17 including the master). Using TeraGen, 1 TB

of data was generated in 3,933 seconds (1.09 hours). The data consisted of 10 billion,

100 byte records. The TeraSort benchmark completed in 11,234 seconds (3.12 hours).

10http://aksw.org/Projects/DBPSB.html
11http://aws.amazon.com/

http://aksw.org/Projects/DBPSB.html
http://aws.amazon.com/

57

Our basic scenario was to test each system against benchmarks on environments com-

posed of 1, 2, 4, 8 and 16 nodes. In addition, one master node was set up as a zookeep-

er/coordinator to run the benchmark. The loading timeout was set to 24 hours and the

individual query execution timeout was set to 1 hour. Systems that were unable to load

data within the 24 hour timeout limit were not allowed to run the benchmark on that

cluster configuration.

For each test, we performed two warm-up runs and ten workload runs. We considered

two key metrics: the arithmetic mean and the geometric mean. The former is sensitive

to outliers whereas the effect of outliers is dampened in the latter.

3.2.3 System Settings

3.2.3.1 4store

We used 4store revision v1.1.4. To set the number of segments, we followed the rule

of thumb proposed by the authors, i.e., power of 2 close to twice as many segments as

there are physical CPU cores on the system. This led to four segments per node. To

benchmark against BSBM, we used the SPARQL endpoint server provided by 4store,

and disabled its soft limit. For the DBpedia benchmark, we used the standard 4store

client (4s-query), also with the soft limit disabled. 4store uses an Avahi daemon to

discover nodes, which requires network multicasting. As multicasts is not supported in

EC2, we built a virtual network between the nodes by running an openvpn infrastructure

for node discovery.

3.2.3.2 Jena+HBase

We used Hadoop 1.0.3, HBase 0.92, and Hive 0.8.1. One zookeeper instance was run-

ning on the master for all cases. We provided 5GB of RAM for the region servers, while

the rest was given to Hadoop. All nodes were located in the North Virginia and North

Oregon region. The parameters used for HBase are available on our website which is

listed in Section 3.3. When configuring each HBase table, we took into account the

access patterns. As a result, for the two dictionary tables with random reads, we used an

8 KB block size so that lookups are faster. For indices, we use the default 64 KB block

size such that range scans are more efficient. We enable block caching for all tables,

but we favor caching of the Id2Value table by enabling the in-memory option. We also

58

enable compression for the Id2Value table in order to reduce I/O when transferring the

verbose RDF data.

For loading data into this system, we first run two MapReduce jobs which generate the

8-byte ids and convert numerical literals to binary representations. Then, for each table,

we run a MapReduce job which sorts the elements by row key and outputs files in the

format expected by HBase. Finally, we run the HBase bulk-loader tool which actually

adopts the previously generated files into the store.

3.2.3.3 Hive+HBase

We used the identical setup of HBase like for Jena+HBase. Before creating the HBase

table, we identify the split keys such that the dataset is roughly balanced when stored

across the cluster. This is done using Hadoop’s InputSampler.RandomSampler.

We use a frequency of 0.1, the number of samples as 1 million, and the maximum

sampled splits as 50% the number of original dataset partitions on HDFS. Once the

HBase table has been generated, we run a MapReduce job to convert the input file into

the HFile format. We likewise run the HBase bulk-loader to load the data in the store.

Jena 2.7.4 was used for the query layer.

3.2.3.4 CumulusRDF (Cassandra+Sesame)

For CumulusRDF, we ran Ubuntu 13.04 loaded from Amazon’s Official Machine Im-

age. The cluster consisted of one node running Apache Tomcat with CumulusRDF and

a set of nodes with Cassandra instances that were configured as one distributed Cassan-

dra cluster. Depending on the particular benchmark settings, the size of the Cassandra

cluster varied.

Cassandra nodes were equipped with Apache Cassandra 1.2.4 and a slightly modified

configuration: a uniform cluster name and appropriate IP configuration were set per

node, the location of directories for data, commit logs, and caches were moved to the

local instance storage. All Cassandra instances equally held the maximum of 256 index

tokens since all nodes ran on the same hardware configuration. The configuration of

CumulusRDF was adjusted to fit the Cassandra cluster and keyspace depending on the

particular benchmark settings. CumulusRDF’s bulk loader was used to load the bench-

mark data into the system. A SPARQL endpoint of the local CumulusRDF instances

was used to run the benchmark.

59

3.2.3.5 Couchbase

Couchbase Enterprise Edition 64 bit 2.0.1 was used with default settings and 6.28 GB

allocated per node. The Couchbase java client version was 1.1.0. The NxParser version

1.2.3 was used to parse N-Triples and json-simple 1.1 to parse JSON. The Jena ARQ

version was 2.9.4.

3.3 Performance Evaluation

Figure 3.1 and 3.2 show a selected set of evaluation results for the various systems.

Query execution times were computed using a geometric average. For a more detailed

list of all cluster, dataset, and system configurations, we refer the reader to our website.12

This website contains all results, as well as our source code, how-to guides, and EC2

images to rerun our experiments. We now discuss the results with respect to each system

and then make broader statements about the overall experiment in the conclusion.

Table 3.1 shows a comparison between the total costs incurred on Amazon for loading

and running the benchmark for the BSBM 100 million, 8 nodes configuration. The costs

are computed using the formula:

(1 + 8)nodes ∗ $0.240/hour ∗ (loading time+ benchmark time)

where the loading and benchmark time are in hours. All values are in U.S. dollars and

prices are listed as of May 2013. Exact costs may vary due to hourly pricing of the EC2

instances.

TABLE 3.1: Total Cost – BSBM 100 million on 8 nodes

4store Jena+HBase Hive+Hbase CumulusRDF Couchbase
$1.16 $35.80 $81.55 $105.15 $86.44

3.3.1 4store

4store achieved sub-second response times for BSBM queries on 4, 8, and 16 nodes

with 10 and 100 million triples. The notable exception is Q5, which touches a lot of

data and contains a complex FILTER clause. Results for BSBM 1 billion are close to

12http://ribs.csres.utexas.edu/nosqlrdf

http://ribs.csres.utexas.edu/nosqlrdf

60

Berlin Sparql Benchmark (BSBM), 1 billion triples, 16 nodes

Q
1

Q
2

Q
3

Q
4

Q
5

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

query

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

4Store

Jena+HBase

Hive+Hbase

CumulusRDF

Couchbase

Berlin Sparql Benchmark (BSBM), 100 million triples, 16 nodes

Q
1

Q
2

Q
3

Q
4

Q
5

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

query

10-3

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

4Store

Hive+Hbase

Couchbase

Berlin Sparql Benchmark (BSBM), 100 million triples, 1 node

Q
1

Q
2

Q
3

Q
4

Q
5

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

query

10-3

10-2

10-1

100

101

102

103

ti
m

e
 [

s]
 l
o
g

4Store

Jena+HBase

Couchbase

FIGURE 3.1: Results for BSBM showing 1 billion and 100 million triples datasets run
on a 16 node cluster. Results for the 100 million dataset on a single node are also

shown to illustrate the effect of the cluster size.

61

DBpedia SPARQL Benchmark, 150 million triples, 16 nodes

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
9

Q
1
0

Q
1
1

Q
1
2

Q
1
3

Q
1
4

Q
1
5

Q
1
6

Q
1
7

Q
1
8

Q
1
9

Q
2
0

query

10-3

10-2

10-1

100

101

ti
m

e
 [

s]
 l
o
g

4store

Jena+HBase

Couchbase

Loading Time for DBpedia SPARQL Benchmark, 150 million triples

1_Node 2_Nodes 4_Nodes 8_Nodes 16_Nodes
0

50

100

150

200

250

300

350

400

450

ti
m

e
 [

m
in

u
te

s]

4store

Jena+HBase

Hive+HBase

CumulusRDF

Couchbase

FIGURE 3.2: Results for the DBpedia SPARQL Benchmark and loading times.

1 second, except again for Q5 which takes between 6 seconds (16 nodes) and 53 sec-

onds (4 nodes). Overall, the system scales for BSBM as query response times steadily

decrease as the number of machines grow. Loading takes a few minutes, except for the

1 billion dataset which took 5.5 hours on 16 nodes and 14.9 hours on 8 nodes. Note:

4store actually times out when loading 1 billion for 4 nodes but we still include the

results to have a coherent baseline.

Results for the DBpedia SPARQL Benchmark are all in the same ballpark, with a me-

dian around 11 seconds when running on 4 nodes, 19 seconds when running on 8, and

32 seconds when running on 16 nodes. We observe that the system is not scalable in

62

this case, probably due to the high complexity of the dataset and an increase in network

delays caused by the excessive fragmentation of DBpedia data stored as property tables

on multiple machines.

3.3.2 Jena+HBase

This implementation achieves sub-second query response times up to a billion triples on

a majority of the highly selective query mixes for BSBM (Q2, Q8, Q9, Q11, and Q12).

This includes those queries that contain a variable predicate. It is not relevant whether

we have an inner or an outer join, instead results are greatly influenced by selectivity.

For low selectivity queries (Q1, Q3, Q10), we see that leveraging HBase features is

critical to even answer queries. For Q1 and Q3, we provide results for all dataset sizes.

These two queries make use of numerical SPARQL filters which are pushed down as

HBase prefix filters, whereas with Q10 we are unable to return results as it contains a

date comparison filter which has not been pushed down. The importance of optimizing

filters is also shown when a query touches a lot of data such as Q5, Q7 – both of which

contain complex or date specific filters.

In terms of the DBpedia SPARQL Benchmark, we see sub-second response times for

almost all queries. One reason is that our loading process eliminates duplicates, which

resulted in 60 million triples from the initial dataset being stored. In addition, the queries

tend to be much simpler than the BSBM queries. The one slower query (Q17) is again

due to SPARQL filters on strings that could were not implemented as HBase filters.

With filters pushed into HBase, the system approaches the performance of specially

designed triple stores on a majority of queries. Still, we believe there is space for

improvement in the join strategies as currently the “off-the-shelf” Jena strategy is used.

3.3.3 Hive+HBase

The implementation of Hive atop HBase introduces various sources of overhead for

query execution. As a result, query execution times are in the minute range. However,

as more nodes are added to the cluster, query times are reduced. Additionally, initial

load times tend to be fast.

For most queries, the MapReduce shuffle stage dominates the running time. Q7 is the

slowest because it contains a 5-way join and requires 4 MapReduce passes from Hive.

63

Currently, the system does not implement a query optimizer and it uses the naive Hive

join algorithm13. For the DBpedia SPARQL Benchmark, we observed faster query

execution times than on BSBM. The dataset itself is more sparse than BSBM and the

DBpedia queries are simpler; most queries do not involve a join. Due to the sparse

nature of the dataset, bloom filters allow us to scan less HDFS blocks. The simplicity of

the queries reduce network traffic and also reduce time spent in the shuffle and reduce

phases. However, queries with language filters (e.g., Q3, Q9, Q11) perform slower since

Hive performs a substring search for the requested SPARQL language identifier).

3.3.4 CumulusRDF: Cassandra+Sesame

For this implementation, the BSBM 1 billion dataset was only run on a 16 node cluster.

The loading time was 22 hours. All other cluster configurations exceeded the loading

timeout. For the 100 million dataset, the 2 node cluster began throwing exceptions mid-

way in the benchmark. We observed that the system not only slowed down as more data

was added but also as the cluster size increased. This could be attributed to the increased

network communication required by Cassandra in larger clusters. With parameter tun-

ing, it may be possible to reduce this. As expected, the loading time decreased as the

cluster size increased.

BSBM queries 1, 3, 4, and 5 were challenging for the system. Some queries exceeded

the one hour time limit. For the 1 billion dataset, these same queries timed out while

most other queries executed in the sub-second range.

The DBpedia SPARQL Benchmark revealed three outliers: Q2, Q3, and Q20. Query 3

timed out for all cluster sizes. As the cluster size increased, the execution time of query

2 and 20 increased as well. All other queries executed in the lower millisecond range

with minor increases in execution time as the cluster size increased.

One hypothesis for the slow performance of the above queries is that, as opposed to

other systems, CumulusRDF does not use a dictionary encoding for RDF constants.

Therefore, joins require equality comparisons which are more expensive than numerical

identifiers.
13https://cwiki.apache.org/Hive/languagemanual-joins.html

64

3.3.5 Couchbase

Couchbase encountered problems while loading the largest dataset, BSBM 1 billion,

which timed out on all cluster sizes. While the loading time for 8 and 16 nodes is close to

24 hours, index generation in this case is very slow, hampered by frequent node failures.

Generating indices during loading was considerably slower with smaller cluster sizes,

where only part of the data can be held in main memory (the index generation process

took from less than an hour up to more than 10 hours). The other two BSBM data

sets, 10 million and 100 million, were loaded on every cluster configuration with times

ranging from 12 minutes (BSBM 10 million, 8 nodes) to over 3.5 hours (100 million, 1

node). In the case of DBpedia, there are many duplicate triples spread across the data

set, which cause many read operations and thus slower loading times. Also, the uneven

size of molecules and triples caused frequent node failures during index creation. For

this reason, we only report results with 4 clusters and more, where the loading times

range from 74 min for 8 nodes to 4.5 hours for 4 nodes.

Overall, query execution is relatively fast. Queries take between 4 ms (Q9) and 104

seconds (Q5) for BSBM 100 million. As noted above, Q5 touches a lot of data and

contains a complex FILTER clause, which leads to a very high number of database

accesses in our case, since none of the triple patterns of the query is very restrictive. As

the cluster size increases, the query execution times remain relatively constant. Results

for DBpedia benchmark exhibit similar trends.

3.4 Conclusions

This work represents, to the best of our knowledge, the first systematic attempt at char-

acterizing and comparing NoSQL stores for Linked Data processing. The systems we

have evaluated above all exhibit their own strengths and weaknesses. Overall, we can

make a number of key observations:

1. Distributed NoSQL systems can be competitive against distributed and native

RDF stores (such as 4store) with respect to query times. Relatively simple SPARQL

queries such as distributed lookups, in particular, can be executed very efficiently

on such systems, even for larger clusters and datasets. For example, on BSBM

1 billion triples, 16 nodes, Q9, Q11, and Q12 are processed more efficiently on

Cassandra and Jena+HBase than on 4store.

65

2. Loading times for RDF data varies depending on the NoSQL system and indexing

approach used. However, we observe that most of the NoSQL systems scale more

gracefully than the native RDF store when loading data in parallel.

3. More complex SPARQL queries involving several joins, touching a lot of data, or

containing complex filters perform, generally-speaking, poorly on NoSQL sys-

tems. Take the following queries for example: BSBM Q3 contains a negation,

Q4 contains a union, and Q5 touches a lot of data and has a complex filter. These

queries run considerably slower on NoSQL systems than on 4store.

4. Following the comment above, we observe that classical query optimization tech-

niques borrowed from relational databases generally work well on NoSQL RDF

systems. Jena+HBase, for example, performs better than other systems on many

join and filter queries since it reorders the joins, pushes down the selections and

filters in its query plans.

5. MapReduce-like operations introduce a higher latency for distributed view main-

tenance and query execution times. For instance, Hive+HBase and Couchbase (on

larger clusters) introduce large amounts of overhead resulting in slower runtimes.

In conclusion, NoSQL systems represent an alternative to distributed and native RDF

stores for simple workloads. Considering the encouraging results from this study, the

very large user base of NoSQL systems, and the fact that there is still ample room for

query optimization techniques, we are confident that NoSQL databases will present an

ever growing opportunity to store and manage Linked Data in the cloud. Nevertheless,

native Linked Data systems begin tailored to handle Linked Data and workload have

high potential to significantly outperform non-native (e.g. NoSQL) systems on work-

load of medium and high complexity. Even for queries of medium complexity NoSQL

approaches remain sub-optimal and for highly complex queries they cannot provide re-

sults. For those reasons in the next chapter we introduce our own native techniques to

efficiently handle Linked Data and workload.

Chapter 4

Storing and Querying Linked Data in
the Cloud

We showed in the previous chapters that despite recent advances in distributed Linked

Data management, processing large-amounts of Linked Data in the cloud is still very

challenging. In spite of its seemingly simple data model, Linked Data actually encodes

rich and complex graphs mixing both instance and schema-level data. Sharding such

data using classical techniques or partitioning the graph using traditional min-cut algo-

rithms leads to very inefficient distributed operations and to a high number of joins. In

this chapter, we describe our methods to manage Linked Data in efficient and scalable

way in the cloud. Contrary to previous approaches, out algorithm runs a physiological

analysis of both instance and schema information prior to partitioning the data. In this

chapter, we describe the data structures we use to compactly co-locate data, the new

algorithms we use to partition and distribute data, and out query execution strategies to

efficiently derive answers of queries in a distributed environment. We also present an

extensive evaluation of our methods showing that they are often two orders of magni-

tude faster than the state-of-the-art approaches on standard workloads. All presented

techniques were implemented in the system named DiploCloud.

4.1 Storage Model

Our storage system in DiploCloud can be seen as a hybrid structure extending several

of the ideas from above. Our system is built on three main structures: RDF molecule

66

67

clusters (which can be seen as hybrid structures borrowing both from property tables

and RDF subgraphs), template lists (storing literals in compact lists as in a column-

oriented database system) and an efficient key index indexing URIs and literals based

on the clusters they belong to.

Figure 4.1 gives a simple example of a few molecule clusters—storing information

about students—and of a template list—compactly storing lists of student IDs. Molecules

can be seen as horizontal structures storing information about a given object instance

in the database (like rows in relational systems). Template lists, on the other hand,

store vertical lists of values corresponding to one type of object (like columns in a re-

lational system). Hence, we say that DiploCloud is a hybrid system, following the ter-

minology used for approaches such as Fractured Mirrors [98] or our own recent Hyrise

system [58].

FIGURE 4.1: The two main data structures in DiploCloud: molecule clusters, storing
in this case RDF subgraphs about students, and a template list, storing a list of literal

values corresponding to student IDs.

Molecule clusters are used in two ways in our system: to logically group sets of related

URIs and literals in the hash-table (thus, pre-computing joins), and to physically co-

locate information relating to a given object on disk and in main-memory to reduce disk

68

and CPU cache latencies. Template lists are mainly used for analytics and aggregate

queries, as they allow to process long lists of literals efficiently.

4.1.1 Key Index

The Key Index is the central index in DiploCloud; it uses a lexicographical tree to parse

each incoming URI or literal and assign it a unique numeric key value. It then stores,

for every key and every template ID, an ordered list of all the clusters IDs containing

the key (e.g., “key 10011, corresponding to a Course object [template ID 17], appears

in clusters 1011, 1100 and 1101”; see also Figure 4.2 for another example). This may

sound like a pretty peculiar way of indexing values, but we show below that this actually

allows us to execute many queries very efficiently simply by reading or intersecting such

lists in the hash-table directly.

The key index is responsible for encoding all URIs and literals appearing in the triples

into a unique system id (key), and back. We use a tailored lexicographic tree to parse

URIs and literals and assign them a unique numeric ID. The lexicographic tree we use

is basically a prefix tree splitting the URIs or literals based on their common prefixes

(since many URIs share the same prefixes) such that each substring prefix is stored once

and only once in the tree. A key ID is stored at every leaf, which is composed of a type

prefix (encoding the type of the element, e.g., Student or xsd : date) and of an auto-

incremented instance identifier. This prefix trees allow us to completely avoid potential

collisions (caused for instance when applying hash functions on very large datasets),

and also let us compactly co-locate both type and instance ids into one compact key. A

second structure translates the keys back into their original form. It is composed of a

set of inverted indices (one per type), each relating an instance ID to its corresponding

URI / literal in the lexicographic tree in order to enable efficient key look-ups.

4.1.2 Templates

One of the key innovations of DiploCloud revolves around the use of declarative storage

patterns [39] to efficiently co-locate large collections of related values on disk and in

main-memory. When setting-up a new database, the database administrator may give

DiploCloud a few hints as to how to store the data on disk: the administrator can give

a list of triple patterns to specify the root nodes, both for the template lists and the

69

molecule clusters (see for instance Figure 4.1, where “Student” is the root node of the

molecule, and “StudentID” is the root node for the template list). Cluster roots are used

to determine which clusters to create: a new cluster is created for each instance of a root

node in the database. The clusters contain all triples departing from the root node when

traversing the graph, until another instance of a root node is crossed (thus, one can join

clusters based on their root nodes). Template roots are used to determine which literals

to store in template lists.

Based on the storage patterns, the system handles two main operations in our system: i)

it maintains a schema of triple templates in main-memory and ii) it manages template

lists. Whenever a new triples enters the system, it associates template IDs corresponding

to the triple by considering the type of the subject, the predicate, and the type of the

object. Each distinct list of “(subject-type, predicate, object-type)” defines a new triple

template. The triple templates play the role of an instance-based RDF schema in our

system. We don’t rely on the explicit RDF schema to define the templates, since a large

proportions of constraints (e.g., domains, ranges) are often omitted in the schema (as it

is for example the case for the data we consider in our experiments, see Section 4.5).

In case a new template is detected (e.g., a new predicate is used), then the template

manager updates its in-memory triple template schema and inserts new template IDs

to reflect the new pattern it discovered. Figure 4.2 gives an example of a template. In

case of very inhomogeneous data sets containing millions of different triple templates,

wildcards can be used to regroup similar templates (e.g., “Student - likes - *”). Note

that this is very rare in practice, since all the datasets we encountered so far (even those

in the LOD cloud) typically consider a few thousands triple templates at most.

Afterwards, the system inserts the triple in one or several molecules. If the triple’s

object corresponds to a root template list, the object is also inserted into the template

list corresponding to its template ID. Templates lists store literal values along with the

key of their corresponding cluster root. They are stored compactly and segmented in

sublists, both on disk and in main-memory. Template lists are typically sorted by con-

sidering a lexical order on their literal values—though other orders can be specified by

the database administrator when he declares the template roots. In that sense, template

lists are reminiscent of segments in a column-oriented database system.

70

Course
InstanceStudentInstance

FirstName

Litteral

LastName

Litteral

StudentID
Is_a

Student
Class

Litteral

(Student032, FirstName, "Joe")

TID: 5

TID: 1

TID: 2

TID: 3
TID: 6

TID: 4

Schema Template and Template IDs (TIDs)

...
...

hash("Joe") -> TID5: (cluster032) Takes

Hash-Table

..., hash("Joe"),... ..., hash("Joe"),...

Clulster032 Template List 5

match

insert

FIGURE 4.2: An insert using templates: an incoming triple (left) is matched to the
current RDF template of the database (right), and inserted into the hash-table, a cluster,

and a template list.

4.1.3 Molecules

DiploCloud uses physiological RDF partitioning and molecule patterns to efficiently

co-locate RDF data in distributed settings. Figure 4.3 (ii) gives an example of molecule.

Molecules have three key advantages in our context:

• Molecules represent the ideal tradeoff between co-location and degree of par-

allelism when partitioning RDF data. Partitioning RDF data at the triple-level is

suboptimal because of the many joins it generates; Large graph partitions (such as

those defined in [71]) are suboptimal as well, since in that case too many related

triples are co-located, thus inhibiting parallel processing (see Section 4.5).

• All molecules are template-based, and hence store data extremely compactly;

• Finally, the molecules are defined in order to materialize frequent joins, for ex-

ample between an entity and its corresponding values (e.g., between a student and

his/her firstname), or between two semantically related entities (e.g., between a

student and his/her advisor) that are frequently co-accessed.

When receiving a new triple the system inserts it in the corresponding molecule(s). In

case the corresponding molecule does not exist yet, the system creates a new molecule

cluster, inserts the triple in the molecule, and inserts the cluster in the list of clusters it

maintains. Figures 4.3 gives a template example that co-locates information relating to

Student instances along with an instance of a molecule for Student123.

Similarly to the template lists, the molecule clusters are serialized in a very compact

form, both on disk and in main-memory. Each cluster is composed of two parts: a list

71

Course
Student

FirstName

Literal

LastName

Literal

StudentID
advisor

Professor

Literal

TID: 3

TID: 1

TID: 5

TID: 4

TID: 2

Takes

TID: 6 emailAddress
TID: 8

teacherOf
TID: 7

University

doctoral
DegreeFrom

Course

Literal

name
Literal

TID: 9
Course22Student123

FirstName

Paul

LastName

Doe

StudentID

advisor

Professor48

4584
Takes

emailAddressteacherOf

Course456 adam@me.com

name

ADS

Course28

Takes

Programming

name

i) ii)

FIGURE 4.3: A molecule template (i) along with one of its RDF molecules (ii)

of offsets, containing for each template ID in the molecule the offset at which the keys

corresponding for the template ID are stored, and the list of keys themselves. Thus,

the size of a molecule, both on-disk and in main-memory, is #TEMPLATES +

(KEY SIZE ∗ #TRIPLES), where KEY SIZE is the size of a key (in bytes),

#TEMPLATES is the number of templates IDs in the molecule, and #TRIPLES

is the number of triples in the molecule (we note that this storage structure is much more

compact than a standard list of triples). To retrieve a given information in a molecule,

the system first determines the position of the template ID corresponding to the informa-

tion sought in the molecule (e.g., “FirstName” is the sixth template ID for the “Student”

molecule above in Figure 4.2). It then jumps to the offset corresponding to that posi-

tion (e.g., 5th offset in our example), reads that offset and the offset of the following

template ID, and finally retrieves all the keys/values between those two offsets to get all

the values corresponding to that template ID in the molecule. The molecule depicted in

Figures 4.3 (ii), for instance, contains 15 triples (including type information), and would

hence require 45 URIs/literals to be encoded using a standard triple-based serialization.

Our molecule, on the other hand, only requires to store 10 keys to be correctly defined,

yielding a compression ratio of 1 : 4.5.

4.1.4 Auxiliary Indexes

While creating molecule templates and molecules identifiers, our system also take cares

of two additional data gathering and analysis tasks. First, it inspects both the schema

and instance data to determine all subsumption (subclass) relations between the classes,

and maintains this information in a compact type hierarchy. We assign to every key the

72

most specific type possible in order to avoid having to materialize the type hierarchy for

every instance, and handle type inference at query time by looking-up types in the type

hierarchy. In case two unrelated types are assigned to a given instance, the partition

manager creates a new virtual type composed of the two types and assigns it to the

instance. Finally, we maintain statistics on each templates, counting the number of

instances for each vertex (instance / literal) and edge (property) in the templates.

For each type, DiploCloud also maintains a list of the keys belonging to that type

(type index). In addition, it maintains a molecule index storing for each key the list

of molecules storing that key (e.g., “key 15123 [Course12] is stored in molecule 23521

[root:Student543]”). This index is particularly useful to answer triple-pattern queries as

we explain below in Section 4.4.

4.2 System Overview

Distributed
Query

Executor

Query
Optimizer

Queries
& Inserts

Results

 W

or
kl

oa
d

URI
pointer

ID

URI

Type Index
Type

keys

Local
Query

Executor
Results

Queries
& Inserts

Master Node

Worker

inverted indices

Key Index

ID

lexicographic tree

Partition Manager

Statistics

Templates

Partitioner

Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Type Hierarchy
Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Allocator

Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Type Hierarchy
Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Molecules Index

molecules

keys

Molecules

Type Index
Type

keys

Local
Query

Executor

Worker

Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Type Hierarchy
Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Molecules Index

molecules

keys

Molecules

Type Index
Type

keys

Local
Query

Executor

Worker

Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Type Hierarchy
Faculty

Lecturer
PostDoc
Professor

AssistantPr
ofessorAssociatePr
ofessorFullProfess
orVisitingProf

essor

Molecules Index

molecules

keys

Molecules

FIGURE 4.4: The architecture of DiploCloud.

The figure 4.4 gives a simplified architecture of DiploCloud. DiploCloud is a native,

RDF database system. It was designed to run on clusters of commodity machines in or-

der to scale out gracefully when handling bigger RDF datasets. In a cloud environment

our system defines two distinct kinds of nodes running on the machines: the Master

node—which is responsible for parsing the incoming queries, translating all URIs and

values appearing in the RDF triples into system keys, delegating parts of the queries

73

to further nodes, and gathering and returning the answers—and the Worker nodes—

that hold (part of) the RDF data and execute the query subplans they receive from the

Master. We describe those two components in more detail in the following.

Our system design follows the architecture of many modern cloud-based distributed sys-

tems (e.g., Google’s BigTable [27]), where one (Master) node is responsible for inter-

acting with the clients and orchestrating the operations performed by the other (Worker)

nodes.

4.2.1 Master Node

The Master node is composed of three main subcomponents: a key index (c.f. Section

4.1.1), in charge of encoding URIs and literals into compact system identifiers and of

translating them back, a partition manager, responsible for partitioning the RDF data

into recurring subgraphs, and a distributed query executor, responsible for parsing the

incoming query, rewriting the query plans for the Workers, collecting and finally re-

turning the results to the client. Note that the Master node can be replicated whenever

necessary to insure proper query load-balancing and fault-tolerance. The Master can

also be duplicated to scale out the key index for extremely large datasets, or to replicate

the dataset on the Workers using different partitioning schemes (in that case, each new

instance of the Master is responsible for one partitioning scheme).

Partition Manager: The partition manager has a number of duties all related to type

management and fine-grained data partitions (molecules). It is the first component

called when loading triples (see Parallel Loading in Section 4.4). When ingesting series

of new triples comes, the Partition Manager first identifies RDF subgraphs following a

given RDF partitioning scheme. DiploCloud supports several partitioning schemes (see

Section 4.3.1). The partition manager analyzes the incoming data and builds molecule

templates first, which act as data prototypes to create RDF molecules. Once the tem-

plates have been defined, the partition manager starts creating molecule identifiers based

on the molecule roots (i.e., central molecule node) it identifies in the incoming data, and

assigns each new molecule to a given Worker in the cluster using a given data allocation

algorithm (see Section 4.3.2). The Workers then build and index the molecules on their

own in a parallel way (see below).

Distributed Query Executor: The Master node also hosts the Distributed Query Ex-

ecutor. The Distributed Query Executor handles connections from clients, optimizes

74

incoming queries, and creates query sub-plans that are sent to the Workers. It also

takes care of all intermediate communications with the workers, collecting and post-

processing intermediate results, and finally preparing and sending the final results to the

client. More information on distributed query processing is given in Section 4.4.3.

4.2.2 Worker Nodes

The Worker nodes hold the partitioned data and its corresponding local indices, and

are responsible for running subqueries and sending results back to the Master node.

Conceptually, the Workers are much simpler than the Master node and are built on three

main data structures: i) a type index, clustering all keys based on their types ii) a series

of RDF molecules, storing RDF data as very compact subgraphs, and iii) a molecule

index, storing for each key the list of molecules where the key can be found.

Type Hierarchy & Type Index: Each Worker stores a copy of the type hierarchy (c.f.

Section 4.1.4) locally. The Workers also store a local Type Index, which is partitioned,

in the sense that each Worker only indexes the keys it is locally responsible for.

RDF Molecules: Workers store the primary copy of the RDF data as RDF molecules.

They store, for every template defined by the template manager, a compact list of objects

connected to the root of the molecule. Molecules are partitioned across the Workers,

following the algorithm (e.g., round robin) specified by the partition manager.

Molecule Index: In addition to the molecules themselves, the Workers also maintain a

Molecule Index for molecules located on the Worker.

4.3 Data Partitioning & Allocation

Triple-table and property-table hash-partitionings are currently the most common par-

titioning schemes for distributed RDF systems. While simple, such hash-partitionings

almost systematically implies some distributed coordination overhead (e.g., to execute

joins / path traversals on the RDF graph), thus making it inappropriate for most large-

scale clusters and cloud computing environments exhibiting high network latencies.

The other two standard relational partitioning techniques, (tuple) round-robin and range

partitioning, are similarly flawed for the data and setting we consider, since they would

partition triples either at random or based on the subject URI / type, hence seriously

75

limiting the parallelism of most operators (e.g., since many instances sharing the same

type would end up on the same node).

Partitioning RDF data based on standard graph partitioning techniques (similarly to

what [71] proposes) is also from our perspective inappropriate in a cloud context, for

three main reasons:

Loss of semantics: standard graph partitioning tools (such as METIS1, which was used

in [71]) consider unlabeled graphs mostly, and hence are totally agnostic to the

richness of an RDF graph including classes of nodes and edges.

Loss of parallelism: partitioning an RDF graph based, for instance, on a min-cut algo-

rithm will lead to very coarse partitions where a high number of related instances

(for instance linked to the same type or sharing links to the same objects) will be

co-located, thus drastically limiting the degree of parallelism of many operators

(e.g., projections or selections on certain types of instances).

Limited scalability: finally, attempting to partition very large RDF graphs is unrealis-

tic in cloud environments, given that state-of-the-art graph partitioning techniques

are inherently centralized and data/CPU intensive (as an anecdotal evidence, we

had to borrow a powerful server and let it run for several hours to partition the

largest dataset we use in Section 4.5 using METIS).

DiploCloud has been conceived from the ground up to support distributed data parti-

tioning and co-location schemes in an efficient and flexible way. DiploCloud adopts

an intermediate solution between tuple-partitioning and graph-partitioning by opting

for a recurring, fine-grained graph-partitioning technique taking advantage of molecule

templates. DiploCloud’s molecule templates capture recurring patterns occurring in the

RDF data naturally, by inspecting both the instance-level (physical) and the schema-

level (logical) data, hence the expression physiological2 partitioning.

4.3.1 Physiological Data Partitioning

We now define the three main molecule-based data partitioning techniques supported

by our system:
1http://glaros.dtc.umn.edu/gkhome/views/metis
2physiological characterizes in our context a process that work both on the physical and logical layers

of the database, as the classical Aries recovery algorithm

http://glaros.dtc.umn.edu/gkhome/views/metis

76

Scope-k Molecules: the simplest method is to define a number of template types (by

default the system considers all types) serving as root nodes for the molecules, and

then to co-locate all further nodes that are directly or indirectly connected to the roots,

up to given scope k. Scope-1 molecules, for example, co-locate in the molecules all

root nodes with their direct neighbors (instances or literals) as defined by the templates.

Scope-2 or 3 molecules concatenate compatible templates from the root node (e.g.,

(student, takes, course) and (course, hasid, xsd : integer)) recursively up to depth k

to materialize the joins around each root, at the expense of rapidly increasing storage

costs since much data is typically replicated in that case (see Section 4.5).

Manual Partitioning: Root nodes and the way to concatenate the various templates

can also be specified by hand by the database administrator, who just has to write a

configuration file specifying the roots and the way templates should be concatenated to

define the generic shape of each molecule type. This is typically the best solution for

relatively stable datasets and workloads whose main features are well-known.

Adaptive Partitioning: Finally, DiploCloud’s most flexible partitioning algorithm starts

by defining scope-1 molecules by default, and then adapts the templates following the

query workload. The system maintains a sliding-window w tracking the recent history

of the workload, as well as related statistics about the number of joins that had to be

performed and the incriminating edges (e.g., missing co-location between students and

courses causing a large number of joins). Then at each time epoch ε, the system: i)

expands one molecule template by selectively concatenating the edges (rules) that are

responsible for the most joins up to a given threshold for their maximal depth and ii)

decreases (up to scope-1) all extended molecules whose extensions were not queried

during the last epoch. In that way, our system slowly adapts to the workload and mate-

rializes frequent paths in the RDF graph while keeping the overall size of the molecules

small.

4.3.2 Distributed Data Allocation

Once the physiological partitions are defined, DiploCloud still faces the choice of how

to distribute the concrete partitions (i.e, the actual RDF molecules defined from the

molecule templates) across the physical nodes. Data allocation in distributed RDF sys-

tems is delicate, since a given allocation scheme has to find a good tradeoff between

77

perfect load-balancing and data co-location. Our template manager implements three

main allocation techniques:

Round-Robin: The round-robin allocation simply takes each new molecule it defines

and assigns it to the next worker. This scheme favors load-balancing mostly.

Coarse Allocation: Coarse allocation splits the incoming data in W parts, where W is

the number of workers, and assigns each part to a given worker. This allocation scheme

favors data co-location mostly.

Semantic Co-location: The third allocation tries to achieve a tradeoff between load-

balancing and co-location by grouping a small number of molecule instances (typically

10) that are semantically related through some connection (i.e., predicate), and then by

allocating such groups in a round-robing fashion.

4.4 Common Operations

We now turn to describing how our system handles typical operations in distributed

environments.

4.4.1 Bulk Load

Loading RDF data is generally speaking a rather expensive operation in DiploCloud but

can be executed in a fairly efficient way when considered in bulk. We basically trade

relatively complex instance data examination and complex local co-location for faster

query execution. We are willing to make this tradeoff in order to speed-up complex

queries using our various data partitioning and allocation schemes, especially in a Se-

mantic Web or LOD context where isolated inserts or updates are from our experience

rather infrequent.

We assume that the data to be loaded is available in a shared space on the cloud (e.g.,

typically in a S3 bucket on AWS). Bulk loading is a hybrid process involving both the

Master—whose task is to encode all incoming data, to identify potential molecule roots

from the instances, and to assign them to the Workers using some allocation scheme—

and all the Workers—which build, store and index their respective molecules in parallel

based on the molecule templates defined.

78

On the worker nodes, building the molecule is an n-pass algorithm (where n is the

deepest level of the molecule, see Section 4.1) in DiploCloud, since we need to construct

the RDF molecules in the clusters (i.e., we need to materialize triple joins to form the

clusters). In a first pass, we identify all root nodes and their corresponding template IDs,

and create all clusters. The subsequent passes are used to join triples to the root nodes

(hence, the student clusters depicted in the Figure 4.1 are built in two phases, one for

the Student root node, and one for the triples directly connected to the Student). During

this operation, we also update the template lists and the key index incrementally. Bulk

inserts have been highly optimized in DiploCloud, and use an efficient page-manager to

execute inserts for large datasets that cannot be kept in main-memory.

This division of work and the fact that the most expensive operation (molecule construc-

tion) is performed completely in parallel enables DiploCloud to bulk load efficiently as

we experimentally show in Section 4.5.

4.4.2 Updates

As for other hybrid or analytic systems, updates can be relatively complex to han-

dle in DiploCloud, since they might lead to a partial rewrite of the key index and

molecule indices, and to a reorganization of the physical structures of several molecules.

To handle them efficiently, we adopt a lazy rewrite strategy, similarly to many mod-

ern read-optimized system (e.g., CStore or BigTable). All updates are performed on

write-optimized log-structures in main-memory. At query time, both the primary (read-

optimized) and log-structured (write-optimized) data stores are tapped in order to return

the correct results.

We distinguish between two kinds of updates: in-place and complex updates. In-place

updates are punctual updates on literal values; they can be processed directly in our sys-

tem by updating the key index, the corresponding cluster, and the template lists if neces-

sary. Complex updates are updates modifying object properties in the molecules. They

are more complex to handle than in-place updates, since they might require a rewrite of

a list of clusters in the key index, and a rewrite of a list of keys in the molecule clusters.

To allow for efficient operations, complex updates are treated like updates in a column-

store (see [104]): the corresponding structures are flagged in the key index, and new

structures are maintained in write-optimized structures in main-memory. Periodically,

the write-optimized structures are merged with the main data structures in an offline

fashion.

79

4.4.3 Query Processing

Query processing in DiploCloud is very different from previous approaches to execute

queries on RDF data, because of the three peculiar data structures in our system: a key

index associating URIs and literals to template IDs and cluster lists, clusters storing

RDF molecules in a very compact fashion, and template lists storing compact lists of

literals. All queries composed of one Basic Graph Pattern (star-like queries) are exe-

cuted totally in parallel, independently on all Workers without any central coordination

thanks to the molecules and their indices.

For queries that still require some degree of distributed coordination—typically to han-

dle distributed joins—we resort to adaptive query execution strategies. We mainly have

two ways of executing distributed joins: whenever the intermediate result set is small

(i.e., up to a few hundred tuples according to our Statistics components), we ship all

results to the Master, which finalizes the join centrally. Otherwise, we fall back to a dis-

tributed hash-join by distributing the smallest result set among the Workers. Distributed

joins can be avoided in many cases by resorting to the distributed data partitioning and

data co-location schemes described above.

We describe below how a few common queries are handled in DiploCloud.

4.4.3.1 Basic Graph Patterns

Basic Graph Patterns are relatively simple in DiploCloud: they are usually resolved

by looking for a bound-variable (URI) in the key index or molecules index, retrieving

the corresponding molecules numbers, and finally retrieving values from the molecules

when necessary. Conjunctions and disjunctions of triples patterns can be resolved very

efficiently in our system. Since the RDF nodes are logically grouped by molecules in

the key index, it is typically sufficient to read the corresponding list of molecules in the

molecules index. No join operation is needed since joins are implicitly materialized in

molecules. The following query (query # 1 in Section 4.5), for instance:

?X a :GraduateStudent .

?X :takesCourse <GraduateCourse0> .

is first optimized by the Master based on the statistics it collected; a query plan is then

sent to all Workers asking them to first look-up all molecules containingGraduateCourse0

(since it is the most selective pattern in the query) using their local molecule index.

80

Each Worker can then contribute to the results independently and in parallel, by re-

trieving the molecule ids, filtering them based on the GraduateStudent type (by sim-

ply inspecting the ids) and returning the resulting ids to the master node. If the tem-

plate ID of GraduateCourse0 in the molecule is ambiguous (for example when a

GraduateStudent can both teach and take courses), then an additional filtering step

is carried out locally at the end of the query plan by looking up molecules and filtering

them based on their predicate (e.g., predicate linkingGraduateStudent toGraduateCourse0).

4.4.3.2 Molecule Queries

Molecule queries or queries retrieving many values/instances around a given instance

(for example for visualization purposes) are also extremely efficient in our system. In

most cases, the key index is invoked to find the corresponding molecule, which contains

then all the corresponding values. For bigger scopes (such as the ones we consider in

our experimental evaluation below), our system can efficiently join clusters based on

the various root nodes they contain.

4.4.3.3 Aggregates and Analytics

Aggregate and analytic queries can also be efficiently resolved by our system. Many an-

alytic queries can be solved by first intersecting lists of clusters in the molecule index,

and then looking up values in the remaining molecule clusters. Large analytic or ag-

gregate queries on literals (such as our third analytic query below, returning the names

of all graduate students) can be extremely efficiently resolved by taking advantage of

template lists (containing compact and sorted lists of literal values for a given template

ID), or by filtering template lists based on lists of molecule IDs retrieved from the key

index.

4.4.3.4 Distributed Join

As a more complete example of query processing, we consider the following LUBM

[59] query:

?Z is_a :Department .

?Y is_a :University .

?X is_a :GraduateStudent .

?Z :subOrganizationOf ?Y . <-- 1st

81

?X :undergraduateDegreeFrom ?Y .<-- 2nd

?X :memberOf ?Z . <-- 3rd

We briefly discuss three possible strategies for dealing with this query below.

For the simplest and the most generic one (Algorithm 2), we prepare intermediate re-

sults on each node; we then send them to the Master node where we perform the final

join. In that way we retrieve elements meeting the 1st constraint (Department sub-

OrganizationOf University), then the 2nd constraint (GraduateStudent undergraduat-

eDegreeFrom University), and the 3rd constraint (GraduateStudent memberOf Depart-

ment). Finally, we perform hash-joins for all those intermediate results on the Master

node.

For the second method, we prepare intermediate results for the 1st constraint, and we

distribute them across the cluster, since in every molecule of type GraduateStudent,

we have all information about the object instance (i.e. undergraduateDegreeFrom

and memberOf) for each GraduateStudent; having distributed intermediate results

corresponding to the 1st constraint, we can perform the joint for the 2nd and 3rd con-

straints completely in parallel.

The third and most efficient strategy would be to increase the size of the considered

molecules, so that in every molecule, besides all information about the root (GraduateStudent),

we would also store all information about Department related to the root, and further

University related to the Department. To answer the query, we just need to retrieve

data about the 2nd and the 3rd constraints in this case, and perform a check on the

molecule to validate that a given University from the 2nd constraint is the same as

the one related to the Department from the 3rd constraint, which indicates that the 1st

constraint is met.

4.5 Performance Evaluation

We have implemented a prototype of DiploCloud following the architecture and tech-

niques described above. The following experiments were conducted for two scenarios:

centralized and distributed. For each of them we evaluated the performance of Diplo-

Cloud and we compared it with the state-of-the-art systems and techniques.

82

Algorithm 2 Query Execution Algorithm with Join on the Master Node
1: procedure EXECUTEQUERY(a, b)
2: for all BGP in QUERY do . BGP - Basig Graph Pattern
3: if BGP.subject then
4: molecules← GetMolecule(subject)
5: else if BGP.object then
6: molecules← GetMolecules(object)
7: end if
8: for all molecules do
9: . check if the molecule matches the BGP

10: for all TP in BGP do . TP - Triple Pattern
11: if TP.subject != molecule.subject then
12: nextMolecule
13: end if
14: if TP.predicate != molecule.predicate then
15: nextMolecule
16: end if
17: if TP.object != molecule.object then
18: nextMolecule
19: end if
20: end for
21: . the molecule matches the BGP, so we can retrieve entities
22: resultBGP← GetEntities(molecule,BGP)
23: end for
24: results← resultBGP
25: end for
26: SendToMasterNode(results)
27: end procedure
28: . On the Master do Hash Join

4.5.1 Datasets and Workloads

To compare the various systems, we used three different benchmarks.

• the Lehigh University Benchmark (LUBM) [59]

• the BowlognaBench Benchmark [41]

• the DBPedia dataset with five queries [14]

LUBM is one of the oldest and most popular benchmarks for Semantic Web data. It

provides an ontology describing universities together with a data generator and fourteen

queries. We generated the following datasets:

83

• 10 universities: 1’272’814 triples [226 MB]

• 100 universities: 13’876’209 triples [2.4 GB]

• 400 universities: 55 035 263 triples [9.4 GB]

• 800 universities: 110 128 171 triples [19 GB]

• 1600 universities: 220 416 262 triples [38 GB]

We compared the runtime execution for LUBM queries and for three analytic queries

inspired by BowlognaBench [41]. LUBM queries are criticized by some for their rea-

soning coverage; this was not an issue in our case, since we focused on RDF DB query

processing rather than on reasoning capabilities. We keep an in-memory representation

of subsumption trees in DiploCloud and rewrite queries automatically to support sub-

class inference for the LUBM queries. We manually rewrote inference queries for the

systems that do not support such functionalities.

The three additional analytic/aggregate queries that we considered are as follows: 1)

a query returning the professor who supervises the most students 2) a query returning

a big molecule containing all triples within a scope of 2 of Student0 and 3) a query

returning all graduate students.

For BowlognaBench, we used two different datasets generated with the BowlognaBench

Instance Generator:

• 1 departments: 1.2 million triples [273MB]

• 10 departments: 12 millions triples [2.7GB]

For both datasets we set 4 fields per department and 15 semesters. We run the 13 queries

of BowlognaBench to compare the query execution time for RDF systems.

Additionally, we also used a dataset extracted from DBPedia (which is interesting in

our context as it is much more noisy than the LUBM and BowlognaBench data) with

five queries [14]. From the original DBpedia 3.5.1, we extracted a subset of:

• 73 731 354 triples [9.3 GB]

All inference queries were implemented by rewriting the query plans for DiploCloud

and the systems that did not support such queries.

84

4.5.2 Methodology

As for other benchmarks (e.g., tpc-x3 or our own OLTP-Benchmark [42]) we include a

warm-up phase before measuring the execution time of the queries. We first run all the

queries in sequence once to warm-up the systems, and then repeat the process ten times

(i.e., we run in total 11 batches containing all the queries in sequence for each system).

We report the mean values for each query and each system below. We assumed that the

maximum time for each query should not exceed 2 hours (we stopped the tests if one

query took more than two hours to be executed). We compared the output of all queries

running on all systems to ensure that all results were correct.

We tried to do a reasonable optimization job for each system, by following the recom-

mendations given in the installation guides for each system. We did not try to optimize

the systems any further, however. We performed no fine-tuning or optimization for

DiploCloud.

We avoided the artifact of connecting to the server, initializing the DB from files and

printing results for all systems; we measured instead the query execution times only.

4.5.3 Systems

We chose those systems to have different comparison points, and because they were

either freely available on the Web, or possible to implement with relatively little effort.

We give a few details about each system below.

AllegroGraph [1] We used AllegroGraph RDFStore 4.2.1 AllegroGraph unfortunately

poses some limits on the number of triples that can be stored for the free edition,

such that we couldn’t load the big data set. For AllegroGraph, we prepared a

SPARQL Python script using libraries provided by the vendor.

BigOWLIM [77] We used BigOWLIM 3.5.3436. OWLIM provides us with a java

application to run the LUBM benchmark, so we used it directly for our tests.

Jena [94] We used Jena-2.6.4 and the TDB-0.8.10 storage component. We created the

database by using the “tdbloader” provided by Jena. We created a Java application

to run and measure the execution time of each query.

3http://www.tpc.org/

85

Virtuoso [45] We used Virtuoso Open-Source Edition 6.1.3. Virtuoso supports ODBC

connections, and we prepared a Python script using the PyODBC library for our

queries.

RDF-3X [90] We used RDF-3X 0.3.5. We slightly modified the system to measure the

execution time of the queries only, without taking into account the initialization

of the database and turning off the print-outs.

4store [62] is a well-known distributed, native RDF system based on property tables

and distributing triples (or quads, actually) based on a hash-partitioning of their

subject. We used 4store revision v1.1.4., with eight segments per node, and the

provided tools to load and query.

SHARD [101] stores RDF triples directly in HDFS and takes advantage of Hadoop for

all distributed processes. We slightly modified the system in order to measure the

execution time of the queries only, without taking into account the initialization

of the database and by turning off the print-outs.

RDF-3X GraphPartitioning : we re-implemented the base approach described in [71]

by using RDF-3X and by partitioning the RDF data using METIS. Rather than

using Hadoop for the distributed coordination, we implemented all distributed

joins in Java, following the same design as for our own prototype.

4.5.4 Centralized Environment

4.5.4.1 Hardware Platform

All experiments were run on a HP ProLiant DL360 G7 server with two Quad-Core

Intel Xeon Processor E5640, 6GB of DDR3 RAM and running Linux Ubuntu 10.10

(Maverick Meerkat). All data were stored on recent 1.4 TB Serial ATA disk.

4.5.4.2 Results

Relative execution times for all queries and all systems are given below, in the Figure 4.5

(log-scale) for 10 universities and in the Figure 4.6 (log-scale) for 100 universities. The

Tables 4.1 and 4.2 shows the loading time in seconds and the storage consumption in

MB for respectively 10 and 100 universities of the LUBM benchmark.

86

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

query

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

ti
m

e
 [

s]
 l
o
g

DiploCloud

AllegroGraph

BigOwlim

Virtuoso

RDF-3X

Jena

q # DiploCloud AllegroGraph BigOwlim Virtuoso RDF-3X Jena

1 0.000014 0.01090 0.0537 0.000129 0.000914 0.0012
2 0.012100 11.40000 0.5190 0.049600 1.400000 0.2190
3 0.000021 0.00378 0.0026 0.001100 0.000791 0.0011
4 0.000080 4.62000 0.0363 0.001820 0.001890 0.0022
5 0.000053 4.74000 0.8190 0.002080 0.001350 0.0029
6 0.016500 1.40000 0.2230 0.622000 0.025100 0.0552
7 0.001220 70.30000 5.9600 0.001550 0.004820 0.7140
8 0.006540 50.90000 1.7400 0.547000 0.008940 0.5430
9 0.067400 NaN NaN 1.140000 0.183000 NaN
10 0.000022 4.80000 0.0037 0.008930 0.001400 0.0010
11 0.000064 0.06040 0.0111 0.002540 0.001370 0.0016
12 0.000017 0.08810 0.0109 0.002140 0.001430 0.0021
13 0.000048 0.02850 0.0589 0.003820 0.001060 0.0010
14 0.012900 1.17000 0.1900 0.537000 0.022800 0.0362
15 0.001160 NaN NaN 0.750000 0.993000 1070.0000
16 0.000051 NaN NaN 0.000785 0.012800 0.0011
17 0.010700 NaN NaN 0.413000 0.011000 0.0801

FIGURE 4.5: Query execution time for the 10 universities LUBM data set

DiploCloud AllegroGraph BigOwlim Virtuoso RDF-3X Jena

Load Time [s] 31 13 50 88 16 98
size [MB] 87 696 209 140 66 118

TABLE 4.1: Load times and size of the databases for the 10 universities LUBM data
set.

DiploCloud BigOwlim Virtuoso RDF-3X Jena

Load Time [s] 427 748 914 214 1146
size [MB] 913 2012 772 694 1245

TABLE 4.2: Load times and size of the databases for the 100 universities LUBM data
set.

87

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

query

10-5

10-4

10-3

10-2

10-1

100

101

102
ti

m
e
 [

s]
 l
o
g

DiploCloud

BigOwlim

Virtuoso

RDF-3X

Jena

q # DiploCloud BigOwlim Virtuoso RDF-3X Jena

1 0.000017 0.0521 0.000438 0.000610 0.0013
2 0.127000 5.9400 4.830000 15.500000 2.2700
3 0.000031 0.0029 0.003750 0.000668 0.0010
4 0.000083 0.3200 0.002910 0.001900 0.0022
5 0.000053 8.7100 0.005650 0.001200 0.0031
6 0.142000 1.7700 15.600000 0.377000 0.7610
7 0.002630 63.4000 0.003110 0.051800 7.4600
8 0.006340 14.9000 3.800000 0.023600 5.2600
9 0.261000 NaN 14.500000 3.010000 NaN
10 0.000017 0.0028 0.085400 0.001220 0.0012

q # DiploCloud BigOwlim Virtuoso RDF-3X Jena

11 0.000060 0.0118 0.183000 0.002350 0.0015
12 0.000018 0.0125 0.088100 0.001060 0.0023
13 0.000562 0.1100 0.029100 0.001110 0.0013
14 0.141000 0.6680 13.300000 0.327000 0.5980
15 0.010400 NaN 14.500000 99.300000 NaN
16 0.000065 NaN 0.003190 0.116000 0.0014
17 0.155000 NaN 6.720000 0.149000 0.7250

FIGURE 4.6: Query execution time for the 100 universities LUBM data set

DiploCloud Virtuoso RDF-3X 4store

Load Time [s] 18.3503 31.71 11.94 6.25
size [MB] 92.0000 108.00 60.00 192.00

TABLE 4.3: Load times and size of the databases for the 1 department BowlognaBench
data set.

We observe that DiploCloud is generally speaking very fast, both for the bulk inserts,

for the LUBM queries and especially for the analytic queries. DiploCloud is not the

fastest system for inserts, and produces slightly larger databases on disk than some

other systems (like RDF-3X), but performs overall very-well for all the queries. Our

system is on average 30 times faster than the fastest RDF data management system we

have considered (i.e., RDF-3X) for the LUBM queries, and on average 350 times faster

than the fastest system (Virtuoso) on the analytic queries. Is is also very scalable (both

the bulk insert and the query processing scale gracefully from 10 to 100 universities).

We can see (Tables 4.3 and 4.4) that Virtuoso takes more time to load and index the

dataset but the size of the indices scales better than for the other systems. The fastest

system is 4Store which also has the biggest indices. Both RDF-3X and Virtuoso achieve

a good compression.

The Figures 4.7 (log-scale) and 4.8 (log-scale) report the experimental results for the

BowlognaBench datasets consisting of 1 and 10 departments respectively. The values

88

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

query

10-5

10-4

10-3

10-2

10-1

100

ti
m

e
 [

s]
 l
o
g

DiploCloud

Virtuoso

RDF-3X

4store

q # DiploCloud Virtuoso RDF-3X 4store

1 0.00236 0.39582 0.00197 0.02197
2 0.00102 0.00172 0.00158 0.00494
3 0.00010 0.11265 0.00707 0.00978
4 NaN 0.21641 NaN 0.03332
5 0.00004 0.00301 0.01262 0.00550
6 0.04547 0.22265 0.13043 0.52229
7 0.00414 0.15336 0.00144 0.04467
8 0.00904 0.04041 0.01790 0.01488
9 0.00385 0.28660 0.00168 0.07075
10 0.00279 0.00251 0.01528 0.34008
11 0.01497 0.02130 0.03619 0.63500
12 0.00002 0.00111 0.00114 0.00259
13 0.00002 0.56823 0.00283 0.08187

FIGURE 4.7: Query execution time for the 1 department BowlognaBench data set.

DiploCloud Virtuoso RDF-3X 4store

Load Time [s] 526.652 363.24 139.55 69.65
size [MB] 920.000 616.00 618.00 1752.00

TABLE 4.4: Load times and size of the databases for the 10 department
BowlognaBench data set.

89

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

query

10-4

10-3

10-2

10-1

100

101
ti

m
e
 [

s]
 l
o
g

DiploCloud

Virtuoso

RDF-3X

4store

q # DiploCloud Virtuoso RDF-3X 4store

1 0.0167 0.4508 0.0083 0.1671
2 0.0071 0.0020 0.0050 0.0070
3 0.0001 0.1102 0.0073 0.0093
4 NaN 0.2145 NaN 0.4604
5 0.0001 0.0045 0.0539 0.0073
6 0.4286 0.2202 1.8182 4.7038
7 0.0200 0.1538 0.0145 0.1171
8 0.0352 0.0438 0.0400 0.0895
9 0.0145 0.3199 0.0137 0.2609
10 0.0064 0.0048 0.1350 7.3526
11 0.0155 0.0179 0.0517 7.9934
12 0.0001 0.0019 0.0010 0.0024
13 0.0072 0.6033 0.0244 3.5917

FIGURE 4.8: Query execution time for the 10 department BowlognaBench data set.

indicate query execution times for each query of the BowlognaBench benchmark. We

note that query 4 could not be run on RDF-3X and DiploCloud as they do not provide

support for pattern matching. The Tables 4.3 and 4.4 shows the loading time in seconds

and the storage consumption in MB for respectively 1 and 10 departments.

As we can see, the query execution time for the BowlognaBench analytic queries strongly

vary for different systems. DiploCloud is slightly slower for the queries 1 and 7 than

RDF-3X, and it is outperformed by Virtuoso for the queries 2 and 10. We can ob-

serve the slower performance of 4Store for 10 out of 13 queries as compared with the

other systems: for some queries (e.g. 10) the execution times took more than 7 seconds.

90

Specifically, longest query executions can be observed for the queries 6, 10, and 11. The

slowest is the path query which involves several joins. For all those queries DiploCloud

performs very well. We can see that the query 8 is not easy to be efficiently answered for

all the systems. The queries 3 and 11 are also challenging because of the several joins

involved, though DiploCloud handles them without any problem (especially the query

3). Instead, the count queries (i.e., 1 and 2) can be performed quite efficiently. One

difference that we can observe for the bigger dataset of BowlognaBench as compared

with the smaller dataset is the good result of Virtuoso: it performed faster than RDF-3X

on 10 out of 13 queries. We can also observe that DiploCloud scales very well, whilst

the competitors for some cases have issues handling the big dataset (e.g. 4store query

8, RDF-3X query 6). In general, we can again observe that DiploCloud outperforms the

competitors for most of the queries for the both datasets and that it scales gracefully.

Over the course of those experiments, we observed that a significant part of query ex-

ecution times can be consumed by encoding and decoding IDs assigned to URIS back

and forth. For this reason, we conducted in [83] to the best of our knowledge the first

systematic comparison of the most common data structures and hash functions used to

encode URI data. As the result of our work we decided to change the structures used

in DiploCloud following those comparison. As we need in our context to favor fast in-

sertions (both for ordered and unordered datasets), fast look-ups and relatively compact

structures with no collision, we decided to replace our prefix tree (LexicographicTree)

with the HAT-trie [8]. We gained both in terms of memory consumption and efficient

look-ups compared to our previous structure; We believe that this new choice will con-

siderably speed-query execution times and improve the scalability of our system.

4.5.5 Distributed Environment

4.5.5.1 Hardware Platform

All experiments (except the EC2 experiments) were run in three cloud configurations of

4, 8, and 16 nodes. Worker nodes were commodity machines with Quad-Core Intel i7-

2600 CPUs @ 3.40GHz, 8GB of DDR3-1600 RAM, 500GB Serial ATA HDD, running

Ubuntu 12.04.2 LTS. The Master node was similar, but with 16GB RAM.

91

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

query

10-4

10-3

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

DiploCloud

SHARD

4store

Graph Partitioning

q # DiploCloud SHARD 4store Graph Partitioning

1 0.004530 244.5374 0.191 0.0134
2 1.285735 727.6800 62.328 NaN
3 0.000719 272.1212 0.194 0.0085
4 0.000859 612.8159 3.517 0.0164
5 0.000810 258.6905 13.014 0.0142
6 7.027607 103.3408 33.480 10.9248
7 0.001422 527.1044 0.201 NaN
8 1.191533 594.6692 0.277 21.6869
9 3.411679 781.3004 2889.510 NaN

q # DiploCloud SHARD 4store Graph Partitioning

10 0.004629 274.0291 12.842 0.0220
11 0.128569 268.5251 0.212 0.5655
12 0.108854 468.1124 0.190 0.0768
13 0.015579 239.0662 0.200 0.0383
14 6.437258 106.7680 29.176 9.7465
15 1.610378 NaN 893.725 NaN
16 0.031483 NaN 0.188 NaN
17 3.813508 NaN 13.120 NaN

FIGURE 4.9: Query execution time for 4 nodes and 400 universities LUBM data set

4.5.5.2 Results

We start by comparing the query execution times for DiploCloud deployed in its sim-

plest configuration i.e., partitioning with Scope-1 molecules, and allocating molecules

in a round-robin fashion.

The Figures 4.9, 4.10, and 4.11 (log-scale) give the results for the LUBM datasets for

400, 800, and 1600 universities executed respectively on 4, 8, and 16 servers. Note

that several queries timed-out for GraphPartitioning (2, 7, 9, 15, 16, 17) (mostly due

to the very large number of generated intermediate results, and due to the subsequent

distributed joins). On the biggest deployment, DiploCloud is on average 140 times

faster than 4store, 244 times faster than SHARD, and 485 times faster than the graph

partitioning approach using RDF-3X (including the time-out values for the timed-out

queries). The Figures 4.12, 4.13, and 4.14 (log-scale) give the results for the DPBedia

dataset. DiploCloud achieves sub-second latencies on most queries, and is particularly

efficient when deployed on larger clusters. We explain some of those results in more

detail below.

92

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

query

10-4

10-3

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

DiploCloud

SHARD

4store

Graph Partitioning

q # DiploCloud SHARD 4store Graph Partitioning

1 0.004530 244.5374 0.191 0.0134
2 1.285735 727.6800 62.328 NaN
3 0.000719 272.1212 0.194 0.0085
4 0.000859 612.8159 3.517 0.0164
5 0.000810 258.6905 13.014 0.0142
6 7.027607 103.3408 33.480 10.9248
7 0.001422 527.1044 0.201 NaN
8 1.191533 594.6692 0.277 21.6869
9 3.411679 781.3004 2889.510 NaN

q # DiploCloud SHARD 4store Graph Partitioning

10 0.004629 274.0291 12.842 0.0220
11 0.128569 268.5251 0.212 0.5655
12 0.108854 468.1124 0.190 0.0768
13 0.015579 239.0662 0.200 0.0383
14 6.437258 106.7680 29.176 9.7465
15 1.610378 NaN 893.725 NaN
16 0.031483 NaN 0.188 NaN
17 3.813508 NaN 13.120 NaN

FIGURE 4.10: Query execution time for 8 nodes and 800 universities LUBM data set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
DiploCloud 0 1/0 0 0 0 0 1 1/0 1/0 0 1/0 1 0 0 0 1/0 0
4store 1 5 1 5 2 1 7 5 11 2 2 2 2 0 3 2 1
RDF3X Part. 0+1 2+5 0+1 0+5 0+2 0+1 2+5 1+5 2+9 0+2 1+2 1+3 0+2 0 - - -

TABLE 4.5: Joins analysis for several system on the LUBM workload (Distributed
Environment). For DiploCloud scope-1/adaptive molecules.

Data Partitioning & Allocation: We now turn to our adaptive partitioning approach.

We implemented our adaptive partitioning approach, keeping all the queries in the his-

tory, considering a max-depth of 2, and switching to a new time epoch after each query

batch. The results are available on the Figures 4.15, 4.16, and 4.17 (log-scale) for

respectively 4, 8, and 16 nodes. Only the deepest (in terms of RDF paths) LUBM

queries are shown on the graphs (the other queries behave the same for both partition-

ing schemes). By co-locating all frequently queried elements, the query execution using

the adaptive partitioning is on average more than 3 times faster than the simple parti-

tioning for those queries. Note that scope-2 molecules would behave like the adaptive

scheme in that case, but take much more space (see Table 4.6).

Join Analysis: In order to better understand the above results, we made a small query

93

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

query

10-4

10-3

10-2

10-1

100

101

102

103

104
ti

m
e
 [

s]
 l
o
g

DiploCloud

SHARD

4store

Graph Partitioning

q # DiploCloud SHARD 4store Graph Partitioning

1 0.001140 504.8053 0.443 0.0121
2 2.539618 1475.7045 161.499 NaN
3 0.000899 503.9658 0.450 0.0565
4 0.001051 1229.6080 12.672 0.0668
5 0.000946 502.0908 47.819 0.1314
6 17.726164 230.1689 73.384 16.3098
7 0.001662 1003.6873 0.456 NaN
8 1.909516 1238.7459 0.560 34.4615
9 6.041795 1523.6669 5850.255 NaN

q # DiploCloud SHARD 4store Graph Partitioning

10 0.004448 502.0709 47.422 0.0194
11 0.256411 497.1197 0.444 0.8637
12 0.304655 982.2692 0.440 0.1065
13 0.028383 489.6785 0.453 0.0564
14 15.849092 227.3002 64.291 14.4278
15 3.087212 NaN 2316.523 NaN
16 0.035231 NaN 0.496 NaN
17 8.404547 NaN 29.481 NaN

FIGURE 4.11: Query execution time for 16 nodes and 1600 universities LUBM data
set

1 2 3 4 5

query

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

DiploCloud 4store

FIGURE 4.12: Query execution
time for DBPedia running on 4

nodes

1 2 3 4 5

query

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

DiploCloud 4store

FIGURE 4.13: Query execution
time for DBPedia running on 8

nodes

execution analysis (see Table 4.5) on the LUBM workload, counting the number of joins

for DiploCloud (counting the number of joins between molecules for scope-1 / adaptive

molecules), 4store (by inspecting the query plans given by the system), and RDF-3X

GraphPartitioning (using EXPLAINs). For the RDF-3X GraphPartitioning approach,

we report both distributed joins (first number) and local joins (second number). We

94

1 2 3 4 5

query

10-2

10-1

100

101

102

ti
m

e
 [

s]
 l
o
g

DiploCloud 4store

q # DiploCloud 4store

1 0.013963 10.413
2 0.610787 10.340
3 1.045317 10.335
4 0.574045 13.370
5 0.274768 13.972

FIGURE 4.14: Query execution time for DBPedia running on 16 nodes

2 8 9 1
1

1
6

query

10-4

10-3

10-2

10-1

100

101

ti
m

e
 [

s]
 l
o
g

scope 1 adaptive

FIGURE 4.15: Scope-1 and adap-
tive partitioning on the most com-
plex LUBM queries for 4 nodes.

2 8 9 1
1

1
6

query

10-2

10-1

100

101

ti
m

e
 [

s]
 l
o
g

scope 1 adaptive

FIGURE 4.16: Scope-1 and adap-
tive partitioning on the most com-
plex LUBM queries for 8 nodes.

observe that DiploCloud avoids almost all joins even for complex queries.

Queries and Results Analysis: The queries in the Table 4.5 can be classified into three

main categories:

• relatively simple queries with a small output, which do not exhibit any signifi-

cant difference when changing the kind of partitioning (e.g., queries 1,3,10,13);

for those kinds of queries DiploCloud significantly outperforms other solutions

because of our template and indexing strategies. Those queries are executed on

Workers independently, fully in parallel, and results are sent to the Master.

• queries generating a big result set, where the main factor then revolves around

transferring data to the master node (e.g., queries 6,14,17); for those queries,

95

2 8 9 1
1

1
6

query

10-2

10-1

100

101

ti
m

e
 [

s]
 l
o
g

scope 1 adaptive

q # scope 1 adaptive

2 2.539618 0.562298
8 1.909516 0.029346
9 6.041795 2.332641
11 0.256411 0.053035
16 0.035231 0.024990

FIGURE 4.17: Scope-1 and adaptive partitioning on the most complex LUBM queries
for 16 nodes.

DiploCloud is often closer to the other systems and suffers from the (potentially)

high network latency associated with cloud environments.

• queries which typically require a distributed join, and for which the partitioning

plays a significant role; DiploCloud performs very well on those queries (since

most joins can be pre-computed in our molecules), with the exception of query 8,

which is also characterized with a big output. For such queries, we differentiate

two kinds of joins as briefly evoked above:

– distributed joins (where we distribute intermediate results among the Work-

ers and then process local joins in parallel); for that kind of queries the

influence of the partitioning is not significant, though the co-location of

molecules on the same node speedups the exchange of intermediate results,

and hence the resulting query execution times

– centralized joins; when a distributed join is too costly, the intermediate re-

sults are shipped to the master node where the final join is performed. We

note that for queries 11 and 12, which are based on molecules indirectly re-

lated through one particular object, that for the coarse partitioning, all work

is done by one node, where the particular object is located; that is the reason

why this partitioning performs slower for those queries.

As presented above, DiploCloud often outperforms the other solutions in terms of the

query execution time, mainly thanks to the fact that related pieces of data are already

co-located in the molecules. For example for the query 2, DiploCloud has to perform

96

4 workers 8 workers 16 workers
molecules configuration scope-1 scope-2 adaptive scope-1 scope-2 adaptive scope-1 scope-2 adaptive

DiploCloud
master

memory (GB) 3.1 3.1 3.1 6.2 6.2 6.2 12.4 12.4 12.4
loading time (sec) 157 154.8 158 372 374 371.83 786 796 784

per worker
memory (GB) 2.32 6.06 3.35 2.41 6.27 3.42 2.7 6.45 4
loading time (sec) 11.72 43 26.38 12 66 37.5 39 115 85

4store loading time (sec) 226 449 893

TABLE 4.6: Load times and size of the databases for the LUBM data set (Distributed
Environment).

4 workers 8 workers 16 workers

DiploCloud
master

memory (GB) 3.2 3.2 3.2
loading time (sec) 1285 296 296

per worker
memory (GB) 3.1 1.6 0.82
loading time (sec) 28 14 7

4store loading time (sec) 537 1284 1313

TABLE 4.7: Load times and size of the databases for the DBPedia data set (Distributed
Environment).

only one join (or zero if we adapt the molecules) since all data related to the elements

queried (e.g. GraduateStudent or Department) are located on one worker and are in

addition directly co-located in memory; The only thing DiploCloud has to do in this

case is to retrieve the list of elements on each Worker and to send it back to the Master,

where it either performs a distributed hash-join (if we have molecules of scope-1), or

it directly takes the result as is (if molecules are adapted). We have similar situations

for the queries 8, 9, 11, and 16. For the query 7, we cannot take advantage of the pre-

computed joins since we currently store RDF data as a directed graph and this particular

query traverses the graph in the opposite direction (this is typically one kind of query

DiploCloud is not optimized for at this stage). For the remaining queries, we do not

require to perform any join at all, and can process the queries completely in parallel on

the Workers and send back results to the Master, while the other systems have to take

into account the intermediate joins (either locally or in a distributed fashion). Another

group of queries for which DiploCloud should be further optimized are queries with

high numbers of returned records, like the queries 6 or 14. In some cases we still

outperform other systems for those queries, but the difference is not as significant.

Data Loading: The Table 4.6 gives the loading times for 4store and DiploCloud using

the LUBM datasets and different partitioning strategies. We observe that the size taken

by the deeper molecules (scope 2) rapidly grows, though the adaptive molecules strike a

good balance between depth and size (we loaded the data according to the final version

of the adaptive partitioning in that case in order to have comparable results for all vari-

ants). Using our parallel batch-loading strategies and adaptive partitioning, DiploCloud

97

is more than 10 times faster than 4store at loading data for the biggest deployment. The

Table 4.7 reports the corresponding numbers for the DBPedia dataset.

EC2 Deployment: Finally, to evaluate how DiploCloud performs in bigger cloud en-

vironments, we deployed it on Amazon EC2 instances4. We picked an M3 Extra Large

Instance for the Master, and M1 Large Instances for the Workers, and load the LUBM

1600 dataset on 32 and 64 nodes. The results (see Figures 4.18) are comparable to those

obtained on our own cluster, though slower, due to the larger network latency on EC2

(hence emphasizing once more the importance of minimizing distributed operations in

the cloud, as DiploCloud does).

We also tested out adaptive partitioning approach on the EC2 infrastructure. The results

are available on the Figures 4.19 and 4.20 (log-scale). Here again we show that by co-

locating all frequently queried elements we can significantlly increase the performance.

Co-location is especially important in environments where the network is not reliable

so that we can minimize the amount of transferred data. We performed a small analysis

of the network latency in that case. We measured the time spent on the Workers and

Master for pure query execution and discovered that the network overhead is between

40% and 70% of the query execution time.

4.6 Conclusions

DiploCloud implements our techniques to efficient and scalable management of Linked

Data in the cloud. From our perspective, it strikes an optimal balance between intra-

operator parallelism and data co-location by considering recurring, fine-grained phys-

iological Linked Data partitions and distributed data allocation schemes, leading how-

ever to potentially bigger data (redundancy introduced by higher scopes or adaptive

molecules) and to more complex inserts and updates. Out methods are particularly

suited to clusters of commodity machines and cloud environments where network la-

tencies can be high, since they systematically tries to avoid all complex and distributed

operations for query execution. Our experimental evaluation showed that our imple-

mentation of presented methods very favorably compare to the state-of-the-art systems

in such environments.
4http://aws.amazon.com/ec2/instance-types/

98

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

query

10-3

10-2

10-1

100

101

102
ti

m
e
 [

s]
 l
o
g

32 EC2 nodes 64 EC2 nodes

q # 32 EC2 nodes 64 EC2 nodes

1 0.003368 0.007636
2 5.312672 5.666275
3 0.003582 0.011645
4 0.002916 0.007484
5 0.002890 0.006573
6 38.603498 46.140534
7 0.005336 0.010024
8 3.380344 2.887932
9 12.166524 12.463822

q # 32 EC2 nodes 64 EC2 nodes

10 0.008409 0.011940
11 0.413627 0.415163
12 0.185264 0.129909
13 0.045790 0.048970
14 33.673436 41.534871
15 6.437457 6.960480
16 0.061883 0.072513
17 17.615777 21.314872

FIGURE 4.18: Query execution time on Amazon EC2 for 1600 Universities from
LUBM dataset.

In the next chapter we extend our molecule-based storage mode to include provenance

data in a very compact way. We present and compare several ways of storing provenance

in Linked Data. We also present a way to track provenance of query execution to provide

information how exactly the query results were derived, i.e. which pieces of data and

how were combined it obtain the results.

99

2 8 9 1
1

1
6

query

10-2

10-1

100

101

102

ti
m

e
 [

s]
 l
o
g

scope 1 adaptive

FIGURE 4.19: Scope-1 and adap-
tive partitioning on Amazon EC2
(32 Nodes) for 1600 Universities

from LUBM dataset.

2 8 9 1
1

1
6

query

10-2

10-1

100

101

102

ti
m

e
 [

s]
 l
o
g

scope 1 adaptive

FIGURE 4.20: Scope-1 and adap-
tive partitioning on Amazon EC2
(64 Nodes) for 1600 Universities

from LUBM dataset.

Chapter 5

Storing and Tracing Provenance in a
Linked Data Management System

In the previous chapter we presented efficient techniques to store and query Big Linked

Data in the cloud. Given the heterogeneity of the data one can find on the Linked Data

cloud, being able to trace back the provenance of query results is rapidly becoming

a must-have feature of Linked Data management systems. While provenance models

have been extensively discussed in recent years, little attention has been given to the

efficient implementation of provenance-enabled queries inside data stores. This chapter

extend the techniques presented in Chapter 4 to efficiently handle such queries. We

present two different storage models to physically co-locate lineage and instance data,

and for each of them describe algorithms for tracing provenance at two granularity

levels. In addition, we present the results of a comprehensive empirical evaluation of

our methods over two different datasets and workloads. We present our implementation

of this approach in TripleProv.

5.1 System Overview

In the following, we give a high-level overview of TripleProv, a native RDF store

supporting the efficient generation of provenance polynomials during query execution.

TripleProv is based on our storing and querying techniques described in details in Chap-

ter 4.

100

101

Figure 5.1 gives an overview of the architecture of our system, composed of a series of

subcomponents:

a query executor responsible for parsing the incoming query, rewriting the query plans,

collecting and finally returning the results along with the provenance polynomials

to the client;

a key index in charge of encoding URIs and literals into compact system identifiers

and of translating them back;

a type index clustering all keys based on their types;

a series of RDF molecules storing RDF data as very compact subgraphs;

a molecule index storing for each key the list of molecules where the key can be found.

We give below an overview of the three most important subcomponents of our system

in a provenance context, i.e., the key index, the molecules, and the molecule index.

The key index is responsible for encoding all URIs and literals appearing in the triples

into a unique system id (key), and back. We use a tailored lexicographic tree to parse

URIs and literals and assign them a unique numeric ID. The lexicographic tree we use

is essentially a prefix tree splitting the URIs or literals based on their common prefixes

(since many URIs share the same prefixes), such that each substring prefix is stored once

and only once in the tree. A key ID is stored at every leaf, which is composed of a type

prefix (encoding the type of the element, e.g., Student or xsd : date) and of an auto-

incremented instance identifier. This prefix tree allows us to completely avoid potential

collisions (caused for instance when applying hash functions on very large datasets),

and also lets us compactly co-locate both type and instance ids into one compact key.

A second structure translates the keys back into their original form. It is composed of a

set of inverted indices (one per type), each relating an instance ID to its corresponding

URI / literal in the lexicographic tree in order to enable efficient key look-ups.

In their simplest form, RDF molecules [43] are similar to property tables [111] and

store, for each subject, the list or properties and objects related to that subject. Molecule

clusters are used in two ways: to logically group sets of relates URIs and literals (thus,

pre-computing joins), and to physically co-locate information related to a given object

on disk and in main-memory to reduce disk and CPU cache latency. TripleProv stores

102

such lists of molecules very compactly on disk or in main memory, thus making query

resolution fast in many contexts.

In addition to the molecules themselves, the system also maintains a molecule in-

dex storing for each key the list of local molecules storing that key (e.g., “key 15123

[Course12] is stored in molecules 23521 [root:Student543] and 23522 [root:Student544]”).

This index is particularly useful to answer triple-pattern queries as we explain below in

Section 5.4.

TripleProv extends our molecule storage (cf. Chapter 4) in two important ways: i) it

introduces new storage structures to store lineage data directly co-located to the instance

data and ii) it supports the efficient generation of provenance polynomials during query

execution. Figure 5.1 gives an overview of our system in action, taking as input a

SPARQL query (and optionally a provenance granularity level), and returning as output

the results of the query along with the provenance polynomials derived during query

execution.

Query
Executor

Query
Optimizer

Inserts

 W

or
kl

oa
d

lexicographic tree

ID URI
pointer

IDURI Molecules Manager
(Physical Prov. Structures)Oid

clusters

Type Hierarchy
type -> sub-types

Template Manager
molecule templates

Type Manager
Type

objects

TripleProv Server

Updates

Queries
(Sparql,
provenance
granularity)

Results +
Provenance
Polynomials

select ?lat ?long
where {
 ?a [] `Eiffel Tower'.
 ?a inCountry FR .
 ?a lat ?lat .
 ?a long ?long .
} source-level

{lat1 long1
lat2 long2
lat3 long3
lat4 long4 ...}

[(l1⊕l2⊕l3)⊗(l4⊕l5)
⊗(l6⊕l7)⊗(l8⊕l9)]

FIGURE 5.1: The architecture of TripleProv; the system takes as input queries (and
optionally a provenance granularity level), and produces as output query results along

with their corresponding provenance polynomials.

103

5.2 Provenance Polynomials

The first question we tackle is how to represent provenance information that we want

to return to the user in addition to the results themselves. Beyond listing the various

sources involved in the query, we want to be able to characterize the specific ways

in which each source contributed to the query results. There has been quite a bit of

work on provenance models and languages recently. Here, we leverage the notion of

provenance polynomials. However, in contrast to the many recent pieces of work in this

space, which tackled more theoretical issues, we focus on the practical realization of

this model within a high performance triple store to answer queries seen as useful in

practice. Specifically, we focus on two key requirements:

1. the capability to pinpoint, for each query result, the exact source from which the

result was selected;

2. the capability to trace back, for each query result, the complete list of sources and

how they were combined to deliver a result.

Hence, we support two different provenance operators at the physical level, one called

pProjection, meeting the first requirement and pinpointing to the exact sources from

which the result was drawn, and a second one called pConstraint, tracing back the full

lineage of the results.

At the logical level, we use two basic operators to express the provenance polynomials.

The first one (⊕) to represent unions of sources, and the second (⊗) to represent joins

between sources.

Unions are used in two cases when generating the polynomials. First, they are used

when a constraint or a projection can be satisfied with triples coming from multiple

sources (meaning that there are more than one instance of a particular triple which is

used for a particular operation). The following polynomial:

l1⊕ l2⊕ l3

for instance, encodes the fact that a given result can originate from three different

sources (l1, l2, or l3, see below Section 5.2.1 for a more formal definition of the

sources). Second, unions are also used when multiple entities satisfy a set of constraints

or projections (like the collection ’provenanceGlobal’ in 5.4.1).

104

As for the join operator, it can also be used in two ways: to express the fact that sources

were joined to handle a constraint or a projection, or to handle object-subject or object-

object joins between a few sets of constraints. The following polynomial:

(l1⊕ l2)⊗ (l3⊕ l4)

for example, encodes the fact that sources l1 or l2 were joined with sources l3 or l4 to

produce results.

5.2.1 Provenance Granularity Levels

One can model RDF data provenance at different granularity levels. Current approaches,

typically, return a list of named graphs from which the answer was computed. Our sys-

tem, besides generating polynomials summarizing the complete provenance of results,

also supports two levels of granularity. First, a lineage li (i.e., an element appearing in

a polynomial) can represent the source of a triple, (e.g., the fourth element in a quadru-

ple). We call this granularity level source-level. Alternatively, a lineage can represent a

quadruple (i.e., a triple plus its corresponding source). This second type of lineage pro-

duces polynomials consisting of all the pieces of data (i.e., quadruples) that were used

to answer the query, including all intermediate results. We call this level of granularity

triple-level.

In addition to those two provenance granularity levels, TripleProv also supports two

levels of aggregation to output the results. The default level aggregates the polyno-

mials for all results, i.e., it gives an overview of all triples/sources used during query

execution. The second level provides full provenance details, explaining—for each sin-

gle result—the way (polynomial) through which this particular result was constructed.

Both aggregation levels typically perform similarly (since one is basically derived from

the other), hence, we mainly focus on aggregated polynomial results in the following.

5.3 Storage Models

We now discuss the RDF storage model of TripleProv, based on our previous techniques

(cf. Chapter 4), and extended with new physical storage structures to store provenance.

105

5.3.1 Native Storage Model

RDF Templates When ingesting new triples, TripleProv first identifies RDF subgraphs.

It analyzes the incoming data and builds what are termed molecule templates. These

templates act as data prototypes to create RDF molecules. Figures 5.2 i) gives a template

example that co-locates information relating to Student instances. Once the templates

have been defined, the system starts creating molecule identifiers based on the molecule

roots (i.e., central molecule nodes) that it identifies in the incoming data.

While creating molecule templates and molecule identifiers, the system takes care of

two additional data gathering and analysis tasks. First, it inspects both the schema and

instance data to determine all subsumption (subclass) relations between the classes, and

maintains this information in a compact type hierarchy. In case two unrelated types are

assigned to a given instance, the system creates a new virtual type composed of the two

types and assigns it to the instance.

RDF Molecules TripleProv stores the primary copy of the RDF data as RDF molecules,

which can be seen as hybrid data structures borrowing both from property tables and

from RDF subgraphs. They store, for every template defined by the template manager,

a compact list of objects connected to the root of the molecule. Figure 5.2 (ii) gives

an example of a molecule. Molecules co-locate data and are template-based, hence

can store data extremely compactly. The molecule depicted in Figures 5.2 (ii), for

instance, contains 15 triples (including type information), and would hence require 45

URIs/literals to be encoded using a standard triple-based serialization. Our molecule,

on the other hand, only requires the storage 10 keys to be correctly defined, yielding a

compression ratio of 1 : 4.5.

Data (or workload) inspection algorithms can be exploited in order to materialize fre-

quent joins though molecules. In addition to materializing the joins between an entity

and its corresponding values (e.g., between a student and his/her firstname), one can

hence materialize the joins between two semantically related entities (e.g., between a

student and his/her advisor) that are frequently co-accessed by co-locating them in the

same molecule.

106

Course
Student

FirstName

Literal

LastName

Literal

StudentID
advisor

Professor

Literal

TID: 3

TID: 1

TID: 5

TID: 4

TID: 2

Takes

TID: 6 emailAddress
TID: 8

teacherOf
TID: 7

University

doctoral
DegreeFrom

Course

Literal

name
Literal

TID: 9
Course22Student123

FirstName

Paul

LastName

Doe

StudentID

advisor

Professor48

4584
Takes

emailAddressteacherOf

Course456 adam@me.com

name

ADS

Course28

Takes

Programming

name

i) ii)

FIGURE 5.2: A molecule template (i) along with one of its RDF molecules (ii).

5.3.2 Storage Model Variants for Provenance

We now turn to the problem of extending the physical data structures of TripleProv to

support provenance queries. There are a number of ways one could implement this in

our system. A first way of storing provenance data would be to simply annotate every

object in the database with its corresponding source. This produces quadruple physical

data structures (SPOL, where S is the subject of the quadruple, P its predicate, O its

object, and L its source), as illustrated in Figure 5.3, SPOL). The main advantage of

this variant is its ease of implementation (e.g., one simply has to extend the data struc-

ture storing the object to also store the source data). Its main disadvantage, however, is

memory consumption since the source data has to be repeated for each triple.

One can try to physically co-locate the source and the triples differently, which results

in a different memory consumption profile. One extreme option would be to regroup

molecules in clusters based on their source (LSPO clustering). This, however, has

the negative effect of splitting our original molecules into several structures (one new

structure per new source using a given subject), thus braking pre-computed joins and

defeating the whole purpose of storing RDF as molecules in the first place. The situation

would be even worse for deeper molecules (i.e., molecules storing data at a wider scope,

or considering large RDF subgraphs). On the other hand, such structures would be quite

appropriate to resolve vertical provenance queries, i.e., queries that explicitly specify

which sources to consider during query execution (however, our goal is not to optimize

for such provenance queries in the present work).

The last two options for co-locating source data and triples are SLPO and SPLO.

SLPO co-locates the source data with the predicates, making it technically speaking

compelling, since it avoids the duplication of the same source inside a molecule, while

at the same time still co-locating all data about a given subject in one structure. SPLO,

107

finally, co-locates the source data with the predicates in the molecules. In practice,

this last physical structure is very similar to SPOL in terms of storage requirements,

since it rarely happens that a given source uses the same predicates with many values.

Compared to SPOL, it also has the disadvantage of considering a relatively complex

structure (PO) in the middle of the physical storage structure (e.g., as the key of a

hash-table mapping to the objects).

These different ways of co-locating data naturally result in different memory overheads.

The exact overhead, however, is highly dependent on the dataset considered, its struc-

ture, and the homogeneity / heterogeneity of the sources involved for the different sub-

jects. Whenever the data related to a given subject comes from many different sources

(e.g., when the objects related to a given predicate come from a wide variety of sources),

the overhead caused by repeating the predicate in the SLPO might not be compensated

by the advantage of co-location. In such cases, models like SPLO or SPOL might be

more appropriate. If, on the other hand, a large portion of the different objects attached

to the predicates come from the same sources, then the SPLO model might pay off

(see also Section 5.5 for a discussion on those points). From this analysis, it is evident

that no single provenance storage model is overall best—since the performance of such

models is somewhat dependent on the queries, of course, but also on the homogeneity /

heterogeneity of the datasets considered.

For the reasons described above, we focus below on two very different storage variants

in our implementation: SLPO, which we refer to as data grouped by source in the fol-

lowing (since the data is regrouped by source inside each molecule), and SPOL, which

we refer to as annotated provenance since the source data is placed like an annotation

next to the last part of the triple (object). We note that implementing such variants at the

physical layer of the database system is a significant effort, since all higher-level calls

(i.e., all operators) directly depend on how the data is laid-out on disk and in memory.

5.4 Query Execution

We now turn to the way we take advantage of the source information stored in the

molecules to produce provenance polynomials. We have implemented specific query

execution strategies in TripleProv that allow to return a complete record of how the re-

sults were produced (including detailed information of key operations like unions and

joins) in addition to the results themselves. The provenance polynomials our system

108

S1

O4

O2

O5

P4
P2

P5
L2

S1

O1

O2

O3

P1
P2

P3

L1

(A) LSPO Stor-
age

S1

L1

L2

O1

O2

O3

O4

O2

O5

P1 P2

P3

P4

P2
P5

(B) SLPO Stor-
age

S1

O1

O2

O3

O4

O2

O5

L1P1

L1P2
L1P3

L2P4
L2P2

L2P5

(C) SPLO Stor-
age

S1

O1

O2

O3

O4

O2

O5

L1

P1
P2

P3

P4
P2

P5

L1

L1

L2

L2

L2

(D) SPOL Stor-
age

FIGURE 5.3: The four different physical storage models identified for co-locating
source information (L) with the triples (SPO) inside RDF molecules.

produce can be generated at source-level or at triple-level, and both for detailed prove-

nance records and for aggregated provenance records.

5.4.1 General Query Answering Algorithm

Algorithm 3 gives a simplified view on how simple star-like queries are answered in

TripleProv. Given a SPARQL query, our system first analyzes the query to produce a

physical query plan, i.e., a tree of operators that are then called iteratively to retrieve

molecules susceptible of containing data relevant to the query. The molecules are re-

trieved by taking advantage of the lexicographic tree to translate any unbound variables

in the query into keys, and then by using the molecule index to locate all molecules

containing those keys (see Chapter 4 for details).

In parallel to the classical query execution process, TripleProv keeps track of the various

triples and sources that have been instrumental in producing results for the query. For

each molecule inspected, our system keeps track of the provenance of any triple match-

ing the current pattern being handled (checkIfTripleExists). In a similar fashion, it keeps

track of the provenance of all entities being retrieved in the projections (getEntity). In

case multiple molecules are used to construct the final results, the system keeps track

of the local provenance of the molecules by performing a union of the local provenance

data using a global provenance structure (provenanceGlobal.union). To illustrate such

operations and their results, we describe below the execution of two sample queries.

109

Algorithm 3 Simplified algorithm for provenance polynomials generation
Require: SPARQL query q

1: results← NULL
2: provenanceGlobal← NULL
3: getMolecules← q.getPhysicalPlan
4: constraints← q.getConstraints
5: projections← q.getProjections

6: for all getMolecules do
7: provenanceLocal← NULL
8: for all constrains do
9: if checkIfTripleExists then

10: provenanceLocal.join
11: else
12: nextMolecule
13: end if
14: end for

15: for all projections do
16: entity = getEntity(for particular projection)
17: if entity is NOT EMPTY then
18: results.add(entity)
19: provenanceLocal.join
20: else
21: nextMolecule
22: end if
23: end for

24: if allConstrainsSatisfied AND allProjectionsAvailable then
25: provenanceGlobal.union
26: end if
27: end for

5.4.2 Example Queries

The first example query we consider is a simple star query, i.e., a query defining a series

of triple patterns, all joined on an entity that has to be identified:

select ?lat ?long

where {

?a [] ‘‘Eiffel Tower’’. (<- 1st constraint)

?a inCountry FR . (<- 2nd constraint)

?a lat ?lat . (<- 1st projection)

?a long ?long . (<- 2nd projection)

}

110

To build the corresponding provenance polynomial, TripleProv first identifies the con-

straints and projections from the query (see the annotated listing above). The query

executor chooses the most selective pattern to start looking up molecules (in this case

the first pattern), translates the bound variable (“Eiffel Tower”) into a key, and retrieves

all molecules containing that key. Each molecule is then inspected in turn to determine

whenever both i) the various constraints can be met (checkIfTripleExists in the algo-

rithm) and ii) the projections can be correctly processed (getEntity in the algorithm).

Our system keeps track of the provenance of each result, by joining the local prove-

nance information of each triple used during query execution to identify the result.

Finally, a provenance polynomial such as the following is issued:

[(l1⊕ l2⊕ l3)⊗ (l4⊕ l5)⊗ (l6⊕ l7)⊗ (l8⊕ l9)].

This particular polynomial indicates that the first constraint has been satisfied with lin-

eage l1, l2 or l3, while the second has been satisfied with l4 or l5. It also indicates that

the first projection was processed with elements having a lineage of l6 or l7, while the

second one was processed with elements from l8 or l9. The triples involved were joined

on variable ?a, which is expressed by the join operation (⊗) in the polynomial. Such a

polynomial can contain lineage elements either at the source level or at the triple level,

and can be returned both in an aggregate or detailed form.

The second example we examine is slightly more involved, as it contains two sets of

constraints and projections with an upper-level join to bind them:

select ?l ?long ?lat

where {

(-- first set)

?p name ‘‘Krebs, Emil’’ .

?p deathPlace ?l .

(-- second set)

?c [] ?l .

?c featureClass P .

?c inCountry DE .

?c long ?long .

?c lat ?lat .

}

The query execution starts similarly as for the first sample query. After resolving the

first two patterns, the second set of patterns is processed by replacing variable ?l with

the results derived from the first set, and by joining the corresponding lineage elements.

111

Processing the query in TripleProv automatically generates provenance polynomials

such as the following:

[(l1⊕ l2⊕ l3)⊗ (l4⊕ l5)] ⊗
[(l6⊕ l7)⊗ (l8)⊗ (l9⊕ l10)⊗ (l11⊕ l12)⊗ (l13)]

where an upper-level join (
⊗

) is performed across the lineage elements resulting from

both sets. More complex queries are solved similarly, by starting with the most selec-

tive patterns and iteratively joining the results and the provenance information across

molecules.

5.5 Performance Evaluation

To empirically evaluate our approach, we implemented the storage models and query ex-

ecution strategies described above. Specifically, we implemented two different storage

models: SPOL and SLOP. For each model, we support two different levels of prove-

nance granularity: source granularity and triple granularity. Our system does not parse

SPARQL queries at this stage (adapting a SPARQL parser is currently in progress), but

offers a similar, high-level and declarative API to encode queries using triple patterns.

Each query is then encoded into a logical physical plan (a tree of operators), which is

then optimized into a physical query plan as for any standard database system. In that

sense, we follow the algorithms described above in Section 5.4.

In the following, we experimentally compare the vanilla version of TripleProv, i.e., the

bare-metal system without provenance storage and provenance polynomials generation,

to both SPOL and SLOP on two different datasets and workloads. For each provenance

storage model, we report results both for generating polynomials at the source and at

the triple granularity levels. We also compare our system to 4store1, where we take

advantage of 4store’s quadruple storage to encode provenance data as named graphs

and manually rewrite queries to return some provenance information to the user (as

discussed below, such an approach cannot produce valid polynomials, but is interesting

anyhow to illustrate the fundamental differences between TripleProv and standard RDF

stores when it comes to provenance).
1http://4store.org/

http://4store.org/

112

We note that the RDF storage system that TripleProv extends (i.e., the vanilla version

of TripleProv) in Chapter 4 has already been compared to a number of other well-

known database systems, including Postgres, AllegroGraph, BigOWLIM, Jena, Virtu-

oso, 4store, and RDF 3X. The system is on average 30 times faster than the fastest RDF

data management system we have considered (RDF-3X) for LUBM queries, and on av-

erage 350 times faster than the fastest system we have considered (Virtuoso) on more

complex analytics.

5.5.1 Hardware Platform

All experiments were run on a HP ProLiant DL385 G7 server with an AMD Opteron

Processor 6180 SE (24 cores, 2 chips, 12 cores/chip), 64GB of DDR3 RAM and running

Ubuntu 12.04.3 LTS (Precise Pangolin). All data were stored on a recent 3 TB Serial

ATA disk.

5.5.2 Datasets

We used two different sources for our data: the Billion Triples Challenge (BTC)2 and

the Web Data Commons (WDC) [89].3 Both datasets are collections of RDF data gath-

ered from the Web. They represent two very different kinds of RDF data. The Billion

Triple Challenge dataset was crawled based on datasets provided by Falcon-S, Sindice,

Swoogle, SWSE, and Watson using the MultiCrawler/SWSE framework. The Web Data

Commons project extracts all Microformat, Microdata and RDFa data from the Com-

mon Crawl Web corpus, the largest and most up-to-data Web corpus that is currently

available to the public, and provides the extracted data for download in the form of

RDF-quads and also in the form of CSV-tables for common entity types (e.g., products,

organizations, locations, etc.).

Both datasets represent typical collections of data gathered from multiple sources, thus

tracking provenance for them seems to precisely address the problem we focus on. We

consider around 115 million triples for each dataset (around 25GB). To sample the

data, we first pre-selected quadruples satisfying the set of considered queries. Then, we

2http://km.aifb.kit.edu/projects/btc-2009/
3http://webdatacommons.org/

http://km.aifb.kit.edu/projects/btc-2009/
http://webdatacommons.org/

113

randomly sampled additional data up to 25GB. Both datasets are available for download

on our website4.

5.5.3 Workloads

We consider two different workloads. For BTC, we use eight existing queries originally

proposed in [91]. In addition, we added two queries with UNION and OPTIONAL

clauses, which we thought were missing in the original set of queries. Based on the

queries used for the BTC dataset, we wrote 7 new queries for the WDC dataset, en-

compassing different kinds of typical query patterns for RDF, including star-queries of

different sizes and up to 5 joins, object-object joins, object-subject joins, and triangular

joins. In addition, we included two queries with UNION and OPTIONAL clauses. As

for the data, the workloads we consdiered are available on our website.

5.5.4 Experimental Methodology

As is typical for benchmarking database systems (e.g., for tpc-x5), we include a warm-

up phase before measuring the execution time of the queries in order to measure query

execution times in a steady-state mode. We first run all the queries in sequence once

to warm-up the systems, and then repeat the process ten times (i.e., we run for each

system we benchmark a total of 11 batches, each containing all the queries we consider

in sequence). We report the mean values for each query. In addition, we avoided the

artifacts of connecting from the client to the server, of initializing the database from

files, and of printing results; We measured instead the query execution times inside the

database system only.

5.5.5 Variants Considered

As stated above, we implemented two storage models (grouped/co-located and anno-

tated) in TripleProv and for each model we considered two granularity levels for track-

ing provenance (source and triple). This gives us four different variants to compare

against the vanilla version of our system. Our goal is in that sense to understand the

4http://exascale.info/tripleprov
5http://www.tpc.org/

http://exascale.info/tripleprov

114

various trade-offs of the approaches and to assess the performance penalty caused by

enabling provenance. We use the following abbreviations to refer to the different vari-

ants in the following:

V: the vanilla version of our system (i.e., the version where provenance is neither stored

nor looked up during query execution);

SG: source-level granularity, provenance data grouped by source;

SA: source-level granularity, annotated provenance data;

TG: triple-level granularity, provenance data grouped by source;

TA: triple-level granularity, annotated provenance data.

5.5.6 Comparison to 4Store

First, we start by an informal comparison with 4Store to highlight the fundamental

differences between our provenance-enabled system and a quad-store supporting named

graphs.

While 4Store storage takes into account quads (and thus, source data can be explicitly

stored), the system does not support the generation of detailed provenance polynomials

tracing back the lineage of the results. Typically, 4Store simply returns standard query

results as any other RDF store. However, one can try to simulate some basic provenance

capabilities by leveraging the graph construct in SPARQL and extensively rewriting the

queries by inserting this construct for each query pattern.

As an example, rewriting the first sample query we consider above in Section 5.4.1

would result in the following:
select ?lat ?long ?g1 ?g2 ?g3 ?g4

where {

graph ?g1 {?a [] "Eiffel Tower" . }

graph ?g2 {?a inCountry FR . }

graph ?g3 {?a lat ?lat . }

graph ?g4 {?a long ?long . }

}

However, such a query processed in 4store would obviously not produce full-fledged

provenance polynomials. Rather, a simple list of concatenated sources would be re-

turned, whether or not they were in the end instrumental to derive the final results of the

query, as follows:

115

lat long l1 l2 l4 l4, lat long l1 l2 l4 l5,

lat long l1 l2 l5 l4, lat long l1 l2 l5 l5,

lat long l1 l3 l4 l4, lat long l1 l3 l4 l5,

lat long l1 l3 l5 l4, lat long l1 l3 l5 l5,

lat long l2 l2 l4 l4, lat long l2 l2 l4 l5,

lat long l2 l2 l5 l4, lat long l2 l2 l5 l5,

lat long l2 l3 l4 l4, lat long l2 l3 l4 l5,

lat long l2 l3 l5 l4, lat long l2 l3 l5 l5,

lat long l3 l2 l4 l4, lat long l3 l2 l4 l5,

lat long l3 l2 l5 l4, lat long l3 l2 l5 l5,

lat long l3 l3 l4 l4, lat long l3 l3 l4 l5,

lat long l3 l3 l5 l4, lat long l3 l3 l5 l5.

The listing above consists of all permutations of values bound to variables referring to

data used to answer the original query (?lat, ?long). Additionally, all named graphs

used to resolve the triple patterns from the query (relating to variables ?g1, ?g2, ?g3,

and ?g4) are also integrated. Obviously, this type of outcome is insufficient for correctly

tracing back the provenance of the results.

Whereas in TripleProv the answer to the original query (without the graph clauses)

would be as follows:

lat long

with, in addition, the following compact provenance polynomial:

[(l1⊕ l2⊕ l3)⊗ (l2⊕ l3)⊗ (l4⊕ l5)⊗ (l4⊕ l5)].

5.5.7 Query Execution Times

The Figure 5.4 gives the query execution times for the BTC dataset, while the Figure

5.5 presents similar results for WDC. We also explicitly give the overhead generated by

our various approaches compared to the non-provenance-enabled (vanilla) version, in

the Figure 5.6 for BTC, and in the Figure 5.7 for WDC, respectively.

Overall, the performance penalty created by tracking provenance in TripleProv ranges

from a few percents to almost 350%. Clearly, we observe a significant difference be-

tween the two main provenance storage models implemented (SG vs SA and TG vs TA).

Retrieving data from co-located structures takes about 10%-20% more time than from

simply annotated graph nodes. We experimented with various physical structures for

116

1 2 3 4 5 6 7 8 9

1
0

query

10-4

10-3

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

V

SG

SA

TG

TA

query # V SG SA TG TA

1 0.620354 1.468967 1.056384 1.195556 1.034092
2 25.781301 44.043982 43.874489 44.866396 43.136169
3 1.055016 1.783890 1.821844 1.814778 1.789879
4 111.107712 200.284815 183.341964 201.988128 180.039427
5 258.409811 464.092544 423.462056 467.121539 416.138520
6 35.804843 109.601699 77.090780 160.291805 78.071724
7 1347.435725 2258.412791 2327.513576 2344.101949 2281.881660
8 4.027142 5.597102 4.976826 5.544529 4.940878
9 0.000365 0.000623 0.000443 0.000598 0.000455
10 10.934833 14.980501 17.178909 16.689216 16.935428

FIGURE 5.4: Query execution times (in seconds) for the BTC dataset (logarithmic
scale)

117

1 2 3 4 5 6 7

query

10-4

10-3

10-2

10-1

100

101

ti
m

e
 [

s]
 l
o
g

V

SG

SA

TG

TA

query # V SG SA TG TA

1 0.000718 0.001723 0.001426 0.002431 0.001464
2 0.000561 0.000980 0.000593 0.000933 0.000576
3 0.001548 0.003423 0.003426 0.004753 0.003376
4 4.663725 8.649200 6.961700 8.829900 7.164200
5 0.105323 0.239502 0.260361 0.331954 0.312802
6 0.018709 0.046867 0.053244 0.074857 0.073286
7 0.002069 0.003947 0.004074 0.005106 0.004011

FIGURE 5.5: Query execution times (in seconds) for the WDC dataset (logarithmic
scale)

SG and TG, but could not significantly reduce this overhead, caused by the additional

look-ups and loops that have to be considered when reading from extra physical data

containers.

We also notice considerable difference between the two granularity levels (SG vs TG

and SA vs TA). Clearly, the more detailed triple-level provenance granularity requires

more time for query execution than the simpler source-level, because of the more com-

plete physical structures that need to be created and updated while collecting the inter-

mediate results sets.

118

1 2 3 4 5 6 7 8 9

1
0

query

0

50

100

150

200

250

300

350

o
v
e
rh

e
a
d
 %

SG

SA

TG

TA

query # SG SA TG TA

1 136.794915 70.287265 92.721448 66.693802
2 70.836925 70.179499 74.026890 67.315719
3 69.086452 72.683932 72.014179 69.654121
4 80.261849 65.012816 81.794877 62.040442
5 79.595559 63.872283 80.767726 61.038205
6 206.108591 115.308249 347.681914 118.047948
7 67.608202 72.736520 73.967626 69.349945
8 38.984467 23.582071 37.678985 22.689424
9 70.700986 21.358160 63.800657 24.644031
10 36.997982 57.102612 52.624334 54.875957

FIGURE 5.6: Overhead of tracking provenance compared to the vanilla version of the
system for the BTC dataset

119

1 2 3 4 5 6 7

query

0

50

100

150

200

250

300

350
o
v
e
rh

e
a
d
 %

SG

SA

TG

TA

query # SG SA TG TA

1 139.983282 98.634717 238.701588 103.928671
2 74.688057 5.704100 66.345811 2.638146
3 121.066908 121.273573 206.974942 118.005683
4 85.456904 49.273381 89.331489 53.615404
5 127.398298 147.203164 215.178319 196.993808
6 150.509920 184.592277 300.117592 291.718336
7 90.768487 96.906718 146.805220 93.852102

FIGURE 5.7: Overhead of tracking provenance compared to the vanilla version of the
system for the WDC dataset

Also, we observe some important differences between the query execution times from

the two datasets we used, even for very similar queries (01-05 map directly from one

dataset onto the other; 09BTC maps to 06WDC and 10BTC maps to 07WDC). Clearly,

the efficiency of our provenance polynomial generation on a given query depends upon

underlying data characteristics. One important dimension in that context is the heterogeneity—

in terms of number of sources providing the data—of the dataset. The more heteroge-

neous the data, the better the annotated storage model performs, since this model makes

no attempt at co-locating data w.r.t. the sources and hence avoids additional look-ups

when many sources are involved. On the other hand, the more structured the data, the

better the co-located models perform.

120

V G A

Loading Time [s] 23.32 27.9 26.8
Memory Consumption [GB] 36.26 53.62 39.54

FIGURE 5.8: Loading times and memory consumption for the BTC dataset

V G A

Loading Time [s] 27.46 67.78 30.56
Memory Consumption [GB] 42.53 66.22 50.29

FIGURE 5.9: Loading times and memory consumption for the WDC dataset

Finally, we briefly discuss two peculiar results appearing in Figure 5.6 fore queries 01

and 06. For query 01, the reason behind the large disparity in performance has to do with

the very short execution times (at the level of 10−3 second), which cannot be measured

more precisely and thus introduces some noise. The performance overheard for query

06 is caused by a very large provenance record on one hand, and a high heterogeneity

in terms of sources for the elements that are used to answer the query.

5.5.8 Loading Times & Memory Consumption

Finally, we discuss the loading times and memory consumption for the various ap-

proaches. Figure 5.8 reports results for the BTC dataset, while Figure 5.9 provides

similar figures for the WDC dataset.

Referring to loading times, the more complex co-located storage model requires more

computations to load the data than the simpler annotation model, which obviously in-

creases the time needed to load data. In terms of memory consumption, the experimental

results confirm our analysis from Section 5.3; The datasets used for our experiments are

crawled from the Web, and hence consider data collated from a wide variety of sources,

which results in a high diversification of the sources for each subject. As we explained

in Section 5.3, storage structures such as SPLO or SPOL are more appropriate in such

a case.

121

5.6 Conclusions

In this chapter, we described our approach for managing Linked Data while also track-

ing provenance. To the best of our knowledge, this is the first work that translates

theoretical insights from the database provenance literature into a high-performance

triple store. We not only present simple tracing of sources for query answers, but also

consider fine-grained multilevel provenance. In this chapter, we described two possible

storage models for supporting provenance in Linked Data management systems. Our

experimental evaluation shows that the overhead of provenance, even though consider-

able, is acceptable for the resulting provision of a detailed provenance trace. We note

that both our query algorithms and storage models can be reused by other databases

(e.g., considering property tables or subgraph storage structures) with only small mod-

ifications. As we integrate a myriad of datasets from the Web, provenance becomes a

critical aspect in ascertaining trust and establishing transparency [57]. Our implemen-

tation of the presented techniques provides the infrastructure needed for exposing and

working with fine-grained provenance in Linked Data oriented environments.

In the next chapter we extend the presented techniques enabling to tailor queries over

Linked Data with provenance data. The methods we present allow to specify which

pieces of data should be used to answer the query. We introduce the concept of provenance-

enabled queries and we present our five provenance-oriented query execution strategies.

Chapter 6

Executing Provenance-Enabled
Queries over Linked Data

As we mentioned above the proliferation of heterogeneous Linked Data on the Web

poses new challenges to database systems. In particular, because of this heterogeneity,

the capacity to store, track, and query provenance data is becoming a pivotal feature

of modern triple stores. In this chapter, we tackle the problem of efficiently executing

provenance-enabled queries over Linked Data. We propose, implement and empirically

evaluate five different query execution strategies for queries over Linked Data that incor-

porate knowledge of provenance. To develop those strategies we leverage the techniques

we presented in Chapter 5. The evaluation is conducted on Linked Data obtained from

two different Web crawls (The Billion Triple Challenge, and the Web Data Commons).

Our evaluation shows that using an adaptive query materialization execution strategy

performs best in our context. Interestingly, we find that because provenance is prevalent

within Linked Data and is highly selective, it can be used to improve query processing

performance. This is a counterintuitive result as provenance is often associated with

additional overhead.

122

123

6.1 Provenance-Enabled Queries

“Provenance is information about entities, activities, and people involved in producing a

piece of data or thing, which can be used to form assessments about its quality, reliabil-

ity or trustworthiness” [56]. The W3C PROV Family of Documents1 defines a model,

corresponding serializations and other supporting definitions to enable the interopera-

ble interchange of provenance information in heterogeneous environments such as the

Web. In the work, we adopt the view proposed in those specifications. We also adopt

the terminology of Cyganiak’s original NQuads specification2, where the context value

refers to the provenance or source of the triple. We note that context values often are

used to refer the named graph to which a triple belongs. Based on this background, we

introduce the following terminology used within this thesis:

Definition 6.1. A Workload Query is a query producing results a user is interested in.

These results are referred to as workload query results.

Definition 6.2. A Provenance Query is a query that selects a set of data from which

some workload query results should originate. Specifically, a Provenance Query re-

turns a set of context values whose triples will be considered during the execution of a

Workload Query.

Definition 6.3. A Provenance-Enabled Query is a pair consisting of a Workload Query

and a Provenance Query, producing results a user is interested in (as specified by the

Workload Query) and originating only from data pre-selected by the Provenance Query.

As mentioned above, provenance data can be taken into account during query execution

through the use of named graphs. Those solutions are however not optimized for prove-

nance, and require rewriting all workload queries with respect to a provenance query.

Our approach aims to keep workload queries unchanged and introduce provenance-

driven optimization on the database system level.

We assume a strict separation of the workload query on one hand and the provenance

query on the other (as illustrated in Figure 6.1)3. Provenance and workload results are

joined to produce a final result. A consequence of our design is that workload queries
1http://www.w3.org/TR/prov-overview/
2http://sw.deri.org/2008/07/n-quads/
3We note that including the provenance predicates directly in the query itself is also possible, and that

the execution strategies and models we develop in the rest of this thesis would work similarly in that case.

http://www.w3.org/TR/prov-overview/
http://sw.deri.org/2008/07/n-quads/

124

Workload
query

Provenance
query

⋈ Resultstriplestore

Workload
results

Provenance
resuls

FIGURE 6.1: Executing provenance-enabled queries; both a workload and a prove-
nance query are given as input to a triplestore, which produces results for both queries

and then combine them to obtain the final results.

can remain unchanged, while the whole process of applying provenance filtering takes

place during query execution. Both provenance and workload queries are to be delivered

in the same way, preferably using the SPARQL language or a high-level API that offers

similar functionality. The body of the provenance query specifies the set of context

values that identify which triples will be used when executing the workload queries.

To further illustrate our approach, we present a few provenance-enabled queries that are

simplified versions of use cases found in the literature. In the examples below, context

values are denoted as ?ctx.

Provenance-enabled queries can be used in various ways. A common case is to ensure

that the data used to produce the answer comes from a set of trusted sources [81]. Given

a workload query that retrieves titles of articles about “Obama”:

SELECT ?t WHERE {

?a <type> <article> .

?a <tag> <Obama> .

?a <title> ?t .

}

One may want to ensure that the articles retrieved come from sources attributed to the

government:

SELECT ?ctx WHERE {

?ctx prov:wasAttributedTo <government> .

}

As per the W3C definition, provenance is not only about the source of data but is also

about the manner in which the data was produced. Thus, one may want to ensure that the

articles in question were edited by somebody who is a “SeniorEditor” and that articles

where checked by a “Manager”. Thus, we could apply the following provenance query

while keeping the same “Obama” workload query:

125

SELECT ?ctx WHERE {

?ctx prov:wasGeneratedBy <articleProd>.

<articleProd> prov:wasAssociatedWith ?ed .

?ed rdf:type <SeniorEdior> .

<articleProd> prov:wasAssociatedWith ?m .

?m rdf:type <Manager> .

}

A similar example to the one above, albeit for a curated protein database, is described

in detail in [30].

Another way to apply provenance-enabled queries is for scenarios in which data is in-

tegrated from multiple sources. For example, we may want to aggregate the chemical

properties of a drug (e.g., its potency) provided by one database with information on

whether it has regulatory approval provided by another:

SELECT ?potency ?approval WHERE {

?drug <name> ’’Sorafenib’’ .

?drug ?link ?chem.

?chem <potency> ?potency .

?drug <approvalStatus> ?approval

}

Here, we may like to select not only the particular sources that the workload query

should be answered over but also the software or approach used in establishing the links

between those sources. For instance, we may want to use links generated manually or

for a broader scope those generated through the use of any type of string similarity. Such

a use-case is described in detail in [13]. Below is an example of how such a provenance

query could be written:

SELECT ?ctx WHERE {

{

?ctx prov:wasGeneratedBy ?linkingActivity.

?linkingActivity rdf:type <StringSimilarity>

}

UNION {

?ctx prov:wasDerivedFrom <ChemDB>}

UNION {

?ctx prov:wasDerivedFrom <DrugDB>}

}

In the following, we discuss approaches to processing these types of queries.

126

Provenance
Query

Workload
Queries

Execute
Provenance

Query

Materialize OR
Co-locate

Tuples Query Results
Execute
Query

Rewrite
Query

FIGURE 6.2: Generic provenance-enabled query execution pipeline, where both the
workload queries and the provenance query get executed in order to produce the final

results

6.2 Provenance in Query Processing

There are several possible ways to execute provenance-enabled queries in a triple store.

The simplest way is to execute both the RDF query and the provenance query indepen-

dently, and to join both result sets based on context values. One also has the option of

pre-materializing some of the data based on the provenance specification. Another way

to execute a provenance-enabled query is through dynamic query rewriting; in that case,

the workload query is rewritten using the provenance query (or some of its results) and

only then is the query executed. The query execution strategies presented in this section

can be implemented in practically any triplestore—provided that it offers some support

for storing and handling context values. We discuss our own implementation based on

TripleProv in Section 6.3.

6.2.1 Query Execution Pipeline

Figure 6.2 gives a high-level perspective on the query execution process. The prove-

nance and workload queries are provided as input; the query execution process can vary

depending on the exact strategy chosen, but typically starts by executing the prove-

nance query and optionally pre-materializing or co-locating data; the workload queries

are then optionally rewritten—by taking into account some results of the provenance

query—and finally get executed. The process returns as output the workload query

results, restricted to those which are following the specification expressed in the prove-

nance query. We give more detail on this execution process below.

127

Algorithm 4 Generic executing algorithm for provenance-enabled queries
1: ctxSet = ExecuteQuery(ProvenanceQuery)
2: materializedTuples = MaterializeTuples (ctxSet) OPTIONAL
3: collocatedTuples = fromProvIdx(ctxSet) OPTIONAL
4: for all workload queries do
5: ExecuteQuery(queryN, ctxSet)
6: end for

6.2.2 Generic Query Execution Algorithm

Algorithm 4 gives a simplified, generic version of the provenance-enabled query exe-

cution algorithm. We start by executing the provenance query, which is processed like

an ordinary query (ExecuteQuery) but always returns sets on context values as an out-

put. Subsequently, the system optionally materializes or adaptively co-locates selected

tuples4 containing data related to the provenance query. We then execute workload

queries taking into account the context values returned from the previous step. The ex-

ecution starts as a standard query execution, but optionally includes a dynamic query

rewriting step to dynamically prune early in the query plan those tuples that cannot

produce valid results given their provenance.

6.2.3 Query Execution Strategies

From the generic algorithm presented above, we now introduce five different strategies

for executing provenance-enabled queries and we describe how they could be imple-

mented in different triplestores.

Post-Filtering: this is the baseline strategy, which executes both the workload and the

provenance query independently. The provenance and workload queries can be

executed in any order (or concurrently) in this case. When both the provenance

query and the workload query have been executed, the results from the prove-

nance query (i.e., a set of context values) are used to filter a posteriori the results

of the workload query based on their provenance (see Algorithm 5). In addi-

tion to retrieving the results, the database system needs in this case to track the

lineage of all results produced by the workload query. More specifically, the sys-

tem needs to keep track of the context values of all triples that were involved in
4We use tuples in a generic way here to remain system-agnostic; tuples can take the form of atomic

pieces of data, triples, quads, small sub-graphs, n-ary lists/sets or RDF molecules (cf. Chapters 4 and 5)
depending on the database system used

128

producing a valid result. We discussed how to come up and how to compactly

represent such lineage using provenance polynomials in Chapter 5. Tracking lin-

eage during query execution is however non-trivial for the systems which, unlike

TripleProv, are not provenance-aware. For quadstores, for instance, it involves

extensively rewriting the queries, leading to more complex query processing and

to an explosion of the number of results retrieved, as we discussed in detail in

Section sec:ComparisonTo4Store of Chapter 5.

Query Rewriting: the second strategy we introduce executes the provenance query up-

front; then, it uses the set of context values returned by the provenance query to

filter out all tuples that do not conform to the provenance results. This can be

carried out logically by rewriting the query plans of the workload queries to add

provenance constraints (see Algorithm 6, is present in ctxSet). This solution is

efficient from the provenance query execution side, though it can be suboptimal

from the workload query execution side (see Section 6.4). It can be implemented

in two ways by the triplestores, either by modifying the query execution process,

or by rewriting the workload queries in order to include constraints on the named

graphs. We note that the query rewriting is very different than for the case dis-

cussed above (for post-filtering, the queries may have to be rewritten to keep track

of the lineage of the results; in this case, we know what context values we should

filter on during query execution, which makes the rewriting much simpler.)

Full Materialization: this is a two-step strategy where the provenance query is first

executed on the entire database (or any relevant subset of it), and then material-

izes all tuples whose context values satisfy the provenance query. The workload

queries are then simply executed on the resulting materialized view, which only

contains tuples that are compatible with the provenance specification. This strat-

egy will outperform all other strategies when executing the workload queries,

since they are executed as is on the relevant subset of the data. However, mate-

rializing all potential tuples based on the provenance query can be prohibitively

expensive, both in terms of storage space and latency. Implementing this strategy

requires either to manually materialize the relevant tuples and modify the work-

load queries accordingly, or to use a triplestore supporting materialized views.

Pre-Filtering: this strategy takes advantages of a dedicated provenance index co-locating,

for each context values, the ids (or hashes) of all tuples belonging to this context.

129

Algorithm 5 Algorithm for the Post-Filtering strategy.
Require: WorkloadQuery
Require: ProvenanceQuery

1: (ctxSet) = ExecuteQuery(ProvenanceQuery)
2: (results, polynomial) = ExecuteQuery(WorkloadQuery) . independent execution

of ProvenanceQuery and WorkloadQuery
3: for all results do
4: if (polynomial[result].ContextValues 6⊆ ctxSet) then
5: remove result
6: else
7: keep result
8: end if
9: end for

This index should typically be created upfront when the data is loaded. After the

provenance query is executed, the provenance index can be looked up to retrieve

the lists of tuple ids that are compatible with the provenance specification. Those

lists can then be used to filter out early the intermediate and final results of the

workload queries (see Algorithm 7). This strategy requires to create a new index

structure in the system (see Section 6.3 for more detail on this), and to modify

both the loading and the query execution processes.

Adaptive Partial Materialization: this strategy introduces a tradeoff between the per-

formance of the provenance query and that of the workload queries. The prove-

nance query is executed first. While executing the provenance query, the system

also builds a temporary structure (e.g., a hash-table) maintaining the ids of all

tuples belonging to the context values returned by the provenance query. When

executing the workload query, the system can then dynamically (and efficiently)

look-up all tuples appearing as intermediate or final results, and can filter them

out early in case they do not appear in the temporary structure. Further processing

is similar to the Query Rewriting strategy, that is, we include individual checks of

context values inside the tuples. However those checks, joins, and further query

processing operations can then be executed faster on a reduced number of ele-

ments. This strategy can achieve performance close to the Full Materialization

strategy while avoiding to replicate the data, at the expense of creating and main-

taining temporary data structures. The implementation of the strategy requires

the introduction of an additional data structure at the core of the system, and the

adjustment of the query execution process in order to use it.

130

Algorithm 6 Algorithm for the Rewriting strategy.
Require: query: workload query
Require: ctxSet: context values; results of provenance query

1: tuples =q.getPhysicalPlan (FROM materializedTuples for materializes scenario)
2: for all tuples do
3: for all entities do
4: if (entity.ContextValues 6⊆ ctxSet) then
5: nextEntity
6: else
7: inspect entity
8: end if
9: end for

10: end for

Algorithm 7 Algorithm for the Pre-Filtering strategy.
Require: query: workload query
Require: ctxSet: context values; results of provenance query

1: tuples =q.getPhysicalPlan
2: for all tuples do
3: for all ctxSet do
4: ctxTuples = getTuplesFromProvIdx(ctx)
5: if (tuple 6⊆ ctxTuples) then
6: nextTuple
7: end if
8: end for
9: for all entities do

10: if (entity.ContextValues 6⊆ ctxSet) then
11: nextEntity
12: else
13: inspect entity
14: end if
15: end for
16: end for

6.3 Storage Model and Indexing

We implemented all the provenance-enabled query execution strategies introduced in

Section 6.2 in TripleProv, our own triplestore supporting different storage models to

handle provenance data. TripleProv is available as an open-source package5, the exten-

sion implemented for this work is also available online6. In the following, we briefly

present the implementation of provenance-oriented data structures and indices we used

to evaluate the query execution strategies described above. We note that it would be

5http://exascale.info/tripleprov
6http://exascale.info/provqueries

http://exascale.info/tripleprov
http://exascale.info/provqueries

131

Algorithm 8 Algorithm for the Partial Materialization strategy.
Require: query: workload query
Require: ctxSet: context values; results of provenance query
Require: collocatedTuples: collection of hash values of tuples related to the result of

the provenance query (ctxSet)
1: tuples =q.getPhysicalPlan
2: for all tuples do
3: if (tuple 6⊆ collocatedTuples) then
4: nextTuple
5: end if
6: for all entities do
7: if (entity.ContextValues 6⊆ ctxSet) then
8: nextEntity
9: else

10: inspect entity
11: end if
12: end for
13: end for

possible to implement our strategies in other systems, using the exact same techniques.

The effort to do so, however, is beyond the scope of the thesis as our techniques requires

one to revise the loading and/or the query execution processes, to create new indices, to

add support for materialized views, and to add support for tracking lineage.

6.3.1 Provenance Storage Model

We use the most basic storage structure we presented in Chapters 4 and 5 in the follow-

ing: 1-scope RDF molecules (cf. Chapter 4), which co-locate objects related to a given

subject and which in are equivalent to property tables (a very popular storage strategy

for RDF systems). In that sense, any tuple we consider is composed of a subject, and a

series of predicate and object related to that subject.

TripleProv supports different models to store provenance information. We compared

those models in Chapter 5. For this work, we consider the “SLPO” storage model,

which co-locates the context values with the predicate-object pairs, and which offers

good overall performance in practice. This avoids the duplication of the same context

value, while at the same time co-locating all data about a given subject in one structure.

The resulting storage model is illustrated in Figure 6.3. In the rest of this section, we

briefly introduce the secondary storage structures we implemented to support the query

execution strategies of Section 6.2.

132

S1

ctx1

ctx2

O1

O2

O3

O4

O2

O5

P1 P2

P3

P4

P2
P5

FIGURE 6.3: Our physical storage model for co-locating context values (ctx) with the
predicates and objects (PO) inside an RDF molecule.

6.3.2 Provenance Index

Our base system support a number of vertical and horizontal data co-location structures.

Here, we propose one more way to co-locate molecules, based on the context values.

This gives us the possibility to prune molecules during query execution as explained

above. Figure 6.4 illustrates this index, which boils down, in our implementation, to

lists of co-located molecule identifiers, indexed by a hash-table whose keys are the

context values the triples stored in the molecules belong to. Note, a given molecule can

appear multiple times in this index. This index is updated upfront, e.g., at loading time.

ctx1

ctx2

ctx3

ctxN

m1 m3 m7 m11

m2 m5 m7

m3 m4 m6 m10

m

m21 m16

FIGURE 6.4: Provenance-driven indexing schema

6.3.3 Provenance-Driven Full Materialization

To support the provenance-driven materialization scheme introduced in Section 6.2.3,

we implemented some basic view creation, update and querying mechanisms in TripleProv.

133

These mechanisms allow us to project, materialize and utilize as a secondary structure

the portions of the molecules that are following the provenance specification (see Figure

6.5 for a simple illustration.)

S1

ctx1

O1

O2

O3

P1 P2

P3

FIGURE 6.5: The molecule after materialization, driven by a provenance query return-
ing only one context value (ctx1).

6.3.4 Adaptive Partial Materialization

Finally, we also implement a new, dedicated structure for the adaptive materialization

strategy. In that case, we co-locate all molecule identifiers that are following the prove-

nance specification (i.e., that contain at least one context value compatible with the

provenance query). We explored several options for this structure and in the end imple-

mented it through a hashset, which gives us constant time performance to both insert

molecules when executing the provenance query and to query for molecules when exe-

cuting workload queries.

m1 m3 m7 m11 m21 m16

FIGURE 6.6: Set of molecules which contain at least some data related to a provenance
query.

6.4 Experiments

To empirically evaluate the query execution strategies discussed above in Section 6.2.3,

we implemented them all in TripleProv. The source code of our system is available

online7. In the following, we experimentally compare a baseline version of our system
7http://exascale.info/provqueries

http://exascale.info/provqueries

134

that does not support provenance queries to our five strategies executing provenance-

enabled queries. We perform the evaluation on two different datasets and workloads.

Within TripleProv, queries are specified as triple patterns using a high-level declarative

API that offers similar functionality to SPARQL.8 The queries are then encoded into a

logical plan (a tree of operators), which is then optimized into a physical query plan as

in any standard database system. The system supports all basic SPARQL operations,

including “UNION” and “OPTIONAL”; at this point, it does not support “FILTER”,

however.

6.4.1 Implementations Considered

Our goal is to understand the various tradeoffs of the query execution strategies we

proposed in Section 6.2.3 and to assess the performance penalty (or eventual speed-

up) caused by provenance queries. We use the following abbreviations to refer to the

different implementations we compare:

TripleProv: the vanilla version of (cf. Chapter 5), without provenance queries; this

version stores provenance data, tracks the lineage of the results, and generates

provenance polynomials , but does not support provenance queries;

Post-Filtering: implements our post-filtering approach; after a workload query execu-

tion gets executed, its results are filtered based on the results from the provenance

query;

Rewriting: our query execution strategy based on query rewriting; it rewrites the work-

load query by adding provenance constraints in order to filter out the results;

Full Materialization: creates a materialized view based on the provenance query, and

executes the workload queries over that view;

Pre-Filtering: uses a dedicated provenance index to pre-filter tuples during query exe-

cution;

Adaptive Materialization: implements a provenance-driven data co-location scheme

to co-locate molecule ids that are relevant given the provenance query.

8We note that our current system does not parse full SPARQL queries at this stage. Adapting a
SPARQL parser is currently in progress.

135

6.4.2 Experimental Environment

Hardware Platform: All experiments were run on a HP ProLiant DL385 G7 server

with an AMD Opteron Processor 6180 SE (24 cores, 2 chips, 12 cores/chip), 64GB of

DDR3 RAM, running Ubuntu 12.04.3 LTS (Precise Pangolin). All data were stored on

a recent 3 TB Serial ATA disk.

Datasets: We used two different datasets for our experiments: the Billion Triples Chal-

lenge (BTC)9 and the Web Data Commons (WDC) [89]10. Both datasets are collections

of RDF data gathered from the Web. They represent two very different kinds of RDF

data. The Billion Triple Challenge dataset was created based on datasets provided by

Falcon-S, Sindice, Swoogle, SWSE, and Watson using the MultiCrawler/SWSE frame-

work. The Web Data Commons project extracts all Microformat, Microdata and RDFa

data from the Common Crawl Web corpus—the largest and most up-to-data Web corpus

that is currently available to the public—and provides the extracted data for download

in the form of RDF-quads or CSV-tables for common entity types (e.g., products, orga-

nizations, locations, etc.).

Both datasets represent typical collections of data gathered from multiple and hetero-

geneous online sources, hence applying some provenance query on them seems to pre-

cisely address the problem we focus on. We consider around 40 million triples for each

dataset (around 10GB). To sample the data, we first pre-selected quadruples satisfying

the set of considered workload and provenance queries. Then, we randomly sampled

additional data up to 10GB.

For both datasets, we added provenance specific triples (184 for WDC and 360 for BTC)

so that the provenance queries we use for all experiments do not modify the result sets of

the workload queries, i.e., the workload query results are always the same. We decided

to implement this to remove a potential bias when comparing the strategies and the

vanilla version of the system (in this way, in all cases all queries have exactly the same

input and output). We note that this scenario represents in fact a worst-case scenario

for our provenance-enabled approaches, since the provenance query gets executed but

does not filter out any result. Therefore, we also performed experiments on the original

data (see Section 6.4.3.4), where we use the dataset as is and where the provenance

query modifies the output of the workload queries. They show that the performance

9http://km.aifb.kit.edu/projects/btc-2009/
10http://webdatacommons.org/

http://km.aifb.kit.edu/projects/btc-2009/
http://webdatacommons.org/

136

gain for all provenance-enabled strategies is even higher in more realistic scenario and

they confirm the what is shown in the main experiments.

Workloads: We consider two different workloads. For BTC, we use eight existing

queries originally proposed in [91]. In addition, we added two queries with UNION

and OPTIONAL clauses, which we thought were missing in the original set of queries.

Based on the queries used for the BTC dataset, we wrote 7 new queries for the WDC

dataset, encompassing different kinds of typical query patterns for RDF, including star-

queries of different sizes and up to 5 joins, object-object joins, object-subject joins, and

triangular joins. We also included two queries with UNION and OPTIONAL clauses.

In addition, for each workload we prepared a complex provenance query, which is con-

ceptually similar to those presented in the Section 6.1.

The datasets, query workloads and provenance-queries presented above are all are avail-

able on-line11.

Experimental Methodology: As is typical for benchmarking database systems (e.g.,

for tpc-x12 or our own OLTP-Benchmark [42]), we include a warm-up phase before

measuring the execution time of the queries in order to measure query execution times

in a steady-state mode. We first run all the queries in sequence once to warm-up the sys-

tem, and then repeat the process ten times (i.e., we run 11 query batches for each variant

we benchmark, each containing all the queries we consider in sequence). We report the

average execution time of the last 10 runs for each query. In addition, we avoided the

artifacts of connecting from the client to the server, of initializing the database from

files, and of printing results; we measured instead the query execution times inside the

database system only.

6.4.3 Results

In this section, we present the results of the empirical evaluation. We note that our

original RDF back-end (the system TripleProv extends) has already been compared to

a number of other well-known triple stores. We refer the reader to Chapter 4 for a

comparison to non-provenance-enabled triple stores. We have also performed an evalu-

ation of TripleProv and different physical models for storing provenance information in

Chapter 5. In this chapter, we focus on a different topic and discuss results for the query

11http://exascale.info/provqueries
12http://www.tpc.org/

http://exascale.info/provqueries

137

1 2 3 4 5 6 7 8 9

query #

10-3

10-2

10-1

100

101

102

103

ti
m

e
 [

s]
 l
o
g

TripleProv

Post-Filtering

Rewriting

Full Materialization

Pre-Filtering

Partial Materialization

FIGURE 6.7: Query execution times for the BTC dataset (logarithmic scale)

execution strategies for Provenance-Enabled Queries. Figure 6.7 reports the query ex-

ecution times for the BTC dataset, while Figure 6.8 shows similar results for the WDC

dataset. We analyze those results below.

6.4.3.1 Datasets Analysis

To better understand the influence of provenance queries on the performance, we start

by taking a look at the dataset, provenance distribution, workload, cardinality of inter-

mediate results, number of molecules inspected, and number of basic operations for all

query execution strategies. The analysis detailed below was done for the BTC dataset

and workload.

First, we analyze the distribution of context values among triples. There are 6’819’826

unique context values in the dataset. Figure 6.9 shows the distribution of the number

of triples given the context values (i.e., how many context values refer to how many

triples). We observe that there are only a handful of context values that are widespread

138

1 2 3 4 5 6 7

query #

10-4

10-3

10-2

10-1

100

ti
m

e
 [

s]
 l
o
g

TripleProv

Post-Filtering

Rewriting

Full Materialization

Pre-Filtering

Partial Materialization

FIGURE 6.8: Query execution times for the WDC dataset (logarithmic scale).

(left-hand side of the figure) and that the vast majority of the context values are highly

selective. On average, each context values is related to about 5.8 triples. Co-locating

data inside molecules further increases the selectivity of the context values, we have

on average 2.3 molecules per context value. We leverage those properties during query

execution, as some of our strategies prune molecules early in the query plan based on

their context values.

6.4.3.2 Discussion

Our implementations supporting provenance-enabled queries overall outperform in the

vanilla TripleProv. This is unsurprising, since as we showed before the selectivity of

provenance data in the datasets allows us to avoid unnecessary operations on tuples

which do not add to the result.

The Full Materialization strategy, where we pre-materialize all relevant subsets of the

molecules, makes the query execution on average 44 times faster than the vanilla version

139

10-1 100 101 102 103 104 105 106 107

#ctx

10-1

100

101

102

103

104

105

106

107

#
tr

ip
le

s

FIGURE 6.9: Distribution of number of triples for number of context values for the
BTC dataset.

for the BTC dataset. The speedup ranges from a few percents to more than 200x (queries

2 and 5 of BTC) over the vanilla version. The price for the performance improvement

is the time we have to spend to materialize molecules, in our experiments for the BTC it

was 95 seconds (the time increases with data size), which can however be amortized by

executing enough workload queries (see Section 6.4.4). This strategy consumed about

2% more memory for handling the materialized data.

The Pre-Filtering strategy performs on average 23 times faster than the vanilla version

for the BTC dataset, but the Adaptive Partial Materialization strategy performs on av-

erage 35 times faster for the BTC dataset. The advantage over the Full Materialization

strategy is that for Adaptive Partial Materialization time to execute a provenance query

and materialize data is 475 times lower and takes only 0.2 second.

The Query Rewriting strategy performs significantly slower than the strategies men-

tioned above for the BTC dataset, since here we have to perform additional checking

over provenance data for each query. However, even in this case, for some queries

we can observe some performance improvement over the vanilla version of the sys-

tem; when the provenance query significantly limits the number of tuples inspected

140

during query execution (see Section 6.2), we can compensate the time taken by addi-

tional checks to improve the overall query execution time—see queries 2 and 5 for BTC.

Those queries can be executed up to 95% faster than the vanilla version as they requires

the highest number of tuple inspections, which can significantly limit other strategies

(see Section 6.4.3.3).

We note that the Post-Filtering strategy performs in all cases slightly worse than TripleProv

(on average 12%) which is expected since there is no early pruning of tuples; queries

are executed in the same way as in TripleProv, and in addition the post-processing phase

takes place to filter the results set.

For the WDC dataset we have significantly higher cardinality of context values set (10

times more elements), which results in significantly worse performance of Pre-Filtering

strategy, since this strategy performs a loop over the set of context values. The prove-

nance overhead here is not compensated on workload query execution since they are

already executed very fast (below 10−2 second for most cases) for this dataset. For

this scenario the time consumed for Full Materialization was 60 seconds and for Adap-

tive Partial Materialization only 0.002 seconds. The Adaptive Partial Materialization

strategy outperforms other strategies even more clearly on the WDC dataset.

The WDC workload shows even higher predominance of Adaptive Partial Materializa-

tion strategy over other strategies.

6.4.3.3 Query Performance Analysis

We now examine the reasons behind the performance differences for the different strate-

gies, focusing on the BTC dataset. Thanks to materialization and co-location, we limit

the number of molecule look-ups we require to answer the workload queries. The ta-

bles below explain the reasons behind the difference in performance. We analyze the

number of inspected molecules, the number of molecules after filtering by provenance,

the cardinality of intermediate results, and the number of context values used to answer

the query.

#r - number of results

#m - total number of molecules used to answer the query, before checking against

context values

141

#mf - total number of molecules after pruning with provenance data

#prov - total number of provenance context values used to answer the query (to gener-

ate a polynomial)

#im - intermediate number of molecules used to answer the query, before checking

against context values

#imf - intermediate number of molecules after pruning with provenance data

#i - number of intermediate results, used to perform joins

#ec - number of basic operation executed on statements containing only constrains in a

query

#er - number of basic operation executed on statements containing projections in a

query

The total number of executed basic operations (#bos) equals #ec+#er.

We prepared the provenance query to ensure that the results for all variants are constant,

therefore we avoid the bias of having different result sets.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 4 4 2 0 0 0 84039 470
2 9 203 203 4 0 0 0 3698911 8392
3 13 32 32 7 0 0 0 18537 5580
4 5 1335 1335 5 1 1 1 44941143 4048
5 5 3054 3053 8 3052 3052 3 79050305 37040
6 2 137 133 6 136 132 374 22110 8365
7 2 20 6 5 2 2 18 438 7239
8 237 267 251 287 0 0 0 752 0
9 17 32 32 8 0 0 0 18537 101420

TABLE 6.1: Query execution analysis for TripleProv and the Post-Filtering strategy.

Table 6.1 shows the baseline statistics for the vanilla version, TripleProv.

Table 6.2 give statistics for the Rewriting. We observe at this level already, we inspect

data from on average 50x less molecules, which results on average in a 30% boost

in performance. However, executing the provenance query also has its price, which

balances this gain in performance for simpler queries (e.g., 7-9).

Table 6.3 gives statistics for our second variant (Full Materialization). The total number

of molecules initially available is in this case reduced by 22x. Thanks to this, the total

number of molecules used to answer the query (’#m’) decreases on average 63x; we also

142

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 4 2 2 0 0 0 5438 470
2 9 203 1 4 0 0 0 832980 6176
3 13 32 32 6 0 0 0 9715 3990
4 5 1335 22 5 1 1 1 1666409 3304
5 5 3054 18 8 3052 17 3 2163812 8008
6 2 137 98 6 136 97 6 13434 5506
7 2 20 2 5 2 1 18 399 7211
8 237 267 237 287 0 0 0 580 0
9 17 32 32 7 0 0 0 9715 52220

TABLE 6.2: Query execution analysis for the Rewriting strategy.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 1 1 2 0 0 0 4660 466
2 9 1 1 4 0 0 0 832426 4144
3 13 31 31 6 0 0 0 2801 2826
4 5 8 8 5 1 1 1 87716 2386
5 5 16 15 8 14 14 3 1865699 4662
6 2 102 98 6 101 97 6 10279 4513
7 2 15 2 5 1 1 14 284 7102
8 237 237 237 287 0 0 0 435 0
9 17 31 31 7 0 0 0 2801 5114

TABLE 6.3: Query execution analysis for the Full Materialization strategy.

reduce the number of molecules inspected after pruning with provenance data (’#mf’)

by 33% compared to the baseline version. This results in a performance improvement

of 29x on average. For some queries (3, 7 and 9), the number of used and inspected

molecules remains almost unchanged, since the workload query itself is very selective

and since there is no room for further pruning molecules before inspecting them. Those

queries perform similarly as for the baseline version. For queries 2, 4, and 5, we observe

that the reduction in terms of the number of molecules used is 200x, 166x, and 190x,

respectively, which significantly impacts the final performance. The price to pay for

these impressive speedups is the time spent on the upfront materialization, which was

95 seconds for the dataset considered.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 2 2 2 0 0 0 5436 470
2 9 1 1 4 0 0 0 832680 6176
3 13 32 32 6 0 0 0 9715 3990
4 5 22 22 5 1 1 1 1663384 3304
5 5 19 18 8 17 17 3 2159510 8008
6 2 102 98 6 101 97 6 13353 5506
7 2 15 2 5 1 1 18 393 7211
8 237 237 237 287 0 0 0 537 0
9 17 32 32 7 0 0 0 9715 52220

TABLE 6.4: Query execution analysis for the Pre-Filtering and Adaptive Partial Ma-
terialization strategies.

143

Table 6.4 gives statistics for our last two implementations using Pre-Filtering and Adap-

tive Partial Materialization. The statistics are similar for both cases (though the struc-

tures used to answer the queries and the query execution strategies vary, as explained

in Sections 6.2 and 6.3). Here the cardinality of the molecule sets remains unchanged

with respect to the vanilla version, and the total number of molecules used to answer the

query is identical to molecules after provenance filtering for the naive version, but all

molecules we inspect contain data related to the provenance query (‘#m’ and ‘#mf’ are

equal for each query). In fact, we inspect a number of molecules similar to Full Mate-

rialization, which yields performance of a similar level, on average 14x (Pre-Filtering)

and 22x (Adaptive Partial Materialization) faster than the Rewriting strategy. The cost

of materialization for Adaptive Partial Materialization is much lower than for Full Ma-

terialization, however, as the strategy only requires 0.2 extra second in order to dynam-

ically co-locate molecules containing data relevant for the provenance query.

6.4.3.4 Representative Scenario

As we mentioned above, our experiments so far aimed at fairly comparing the execution

times for different strategies, thus we prepared an experimental scenario where the final

output remains unchanged for all implementations (including vanilla TripleProv). In

this section, we present a micro-benchmark depicting a representative scenario run on

the original data, where the output changes due to constraints imposed on the workload

by a provenance query.

Table 6.5 shows the query execution analysis. The number of results is in this case

smaller for many queries as results are filtered out based on their context values.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 1 1 1 0 0 0 2166 222
2 8 1 1 2 0 0 0 604489 5064
3 10 4 4 4 0 0 0 2002 2970
4 5 8 8 3 1 1 1 82609 2768
5 3 5 5 4 4 4 1 1381357 6364
6 1 4 4 4 3 3 1 5601 2523
7 1 15 2 3 1 1 18 297 4079
8 5 5 5 4 0 0 0 5 0
9 10 4 4 4 0 0 0 2002 2970

TABLE 6.5: Query execution analysis for the Pre-Filtering and Partial Materialization
strategies for the Representative Scenario.

Figure 6.10 shows performance results for the BTC dataset and workload and a prove-

nance query modifying the output.

144

1 2 3 4 5 6 7 8 9

query #

10-4

10-3

10-2

10-1

100

101

102

103

ti
m

e
 [

s]
 l
o
g

TripleProv

Post-Filtering

Rewriting

Full Materialization

Pre-Filtering

Partial Materialization

FIGURE 6.10: Query execution times for the BTC dataset (logarithmic scale), Repre-
sentative Scenario.

As shown on Figure 6.10, the performance gain for all provenance-enabled strategies

is higher in more realistic scenario where we did not modify the original data. This

speedup is caused by smaller number of basic operations (#ec + #er), which results

from a fewer number of intermediate results. For queries for which the results remains

the same (2 and 4), the improvement is directly related to the smaller number of basic

operations performed, caused by a limited number of context values resulting from the

provenance query.

6.4.4 End-to-End Workload Optimization

Having several query execution strategies, it is interesting to know which one per-

forms better under what circumstances. Specifically, when it pays off to use a strategy

which has a higher cost for executing the provenance query and when it is not benefi-

cial. Ideally, the time consumed on the execution of the provenance query (including

145

0 500 1000 1500 2000
0

100

200

300

400

500

600

Pre-Filtering

Partial Materialization

Full Materialization

FIGURE 6.11: Cumulative query execution time including time of materialization for
2’000 repetitions of query 1 for BTC.

some potential pre-materialization) should be compensated when executing the work-

load queries. Let i and j denote two different query execution strategies and P and W

denote the time taken to execute the provenance and the workload queries, respectively.

If: Pi +Wi < Pj +Wj , then strategy i should be chosen since it yields an overall loser

cost for running the entire provenance-enabled workload.

As an illustration, Figure 6.11 shows the cumulative query execution time for query

1 of BTC including the time overhead for the provenance query execution and data

materialization. We observe that the Partial Materialization strategy compensates the

overhead of running the provenance query and of materialization after a few repetitions

of the query already, compared with the Pre-Filtering, which has a lower cost from a

provenance query execution perspective, but which executes workload queries slower.

For the case of Full Materialization, which has a significantly higher materialization

overhead, it takes about 900 workload query repetitions to amortize the cost of running

the provenance query and pre-materializing data and to beat the Pre-Filtering strategy.

The Full Materialization strategy outperforms the Partial Materialization strategy only

after more than 1’500 repetitions of the query.

In the end, the optimal strategy depends on the data, on the exact mixture of (prove-

nance and workload) queries, and of their frequencies. Given those three parameters,

one can pick the optimal execution strategies using several techniques. If the prove-

nance and the workload queries are known in advance or do not vary much, one can run

a sample of the queries using different strategies (similarly to what we did above) and

pick the best-performing one. If the queries vary a lot, then one has to resort to an ap-

proximate model of query execution in order to pick the best strategy, as it is customary

in traditional query optimization. Different models can by used in this context, like the

146

103 104 105 106 107

#basic operations (log)

10-3

10-2

10-1

100

101

102

103

ti
m

e
 [

s]
 (

lo
g
)

Model

Experiments

FIGURE 6.12: Query execution time vs. number of basic operations from experimental
results from our model, where the model parameters a and b were fit to 0.85 and -9.85,

respectively.

very detailed main-memory model we proposed in [58], or the system-agnostic model

recently proposed in [66].

As observed above, however, the performance of our various strategies are strongly

correlated (with a correlation coefficient of 95%) to the number of basic operations

(e.g., molecule look-ups) performed—at least as run in our system. Hence, we propose

a simple though effective model in our context based on this observation. We fit a

model based on experimental data giving the time to execute a varying number of basic

operations. In our setting, the best model turns out to be e(a∗ln bos+b) (the logarithm

comes from the cost of preparing a query, such as translating strings into identifiers and

building the query plan, which gets amortized with a higher number of subsequent basic

operations). Figure 6.12 shows the performance of this model in practice. Using this

model and statistics about the predicates in the queries, we can successfully predict the

winning strategy, i.e., Partial Materialization for the scenarios discussed above.

6.5 Conclusions

In this chapter, we considered the following research question: “What is the most ef-

fective query execution strategy for provenance-enabled queries”? The ultimate answer

to this question depends on the exact data and queries used, though based on our em-

pirical analysis above, we believe that a, adaptive materialization strategy provides the

best trade-off for Linked Data in general. Our performance results show that both on

the Web of Data Commons and on the Billion Triple Challenge datasets, this strategy

performs best when taking into account the costs of materialization. A key reason for

147

this result is the selectivity of provenance on the Web of Linked Data. Hence, by lever-

aging knowledge of provenance, one can execute many types of queries roughly 30x

faster than a baseline store.

In order to answer the research question above, this chapter made the following con-

tributions: a characterization of provenance-enabled queries, definitions for five query

execution strategies, an implementation of these strategies in TripleProv, as well as a

detailed performance and dataset analysis.

Chapter 7

Conclusions

In this thesis, we dealt with the problem of Linked Data management, which can be

characterized as high in volume, variety, velocity, and heterogeneity (see Chapter 1).

Because of those characteristics, storing and querying graph-oriented Big Linked Data

becomes a very complex task; moreover, storing, tracking, and querying provenance

data is becoming a pivotal feature of modern triple stores.

To better understand this problem, we started with a detailed analysis of existing ap-

proaches to manage Linked Data; in Chapter 2, we presented a series of current ap-

proaches in the field, and analyzed storage models, indexing and querying strategies.

Subsequently, we evaluated in Chapter 3 a set of Linked Data Management Systems

regrouped under the NoSQL umbrella; we showed that in spite of the fact that exist-

ing infrastructures can handle simple Linked Data workloads, the performance of more

complex queries is still unsatisfying using such systems.

Following those conclusions, we proposed in Chapter 4 our own methods to efficient

store and query big amounts of Linked Data (Research Question Q1). We presented a

novel hybrid storage model considering Linked Data both from a graph and from an an-

alytics perspective. Our molecule-based storage model allows us to efficiently partition

data in the cloud to minimize the number of expensive distributed operations. We also

proposed a series of efficient query execution strategies leveraging our compact stor-

age model and taking advantage of advanced data co-location strategies, enabling us to

execute most of the operations fully in parallel. Our techniques to query Linked Data

in the cloud strike an optimal balance between intra-operator parallelism and data co-

location by considering recurring, fine-grained physiological Linked Data partitions and

148

149

distributed data allocation schemes, leading however to potentially bigger data (redun-

dancy introduced by higher scopes or adaptive molecules) and to more complex insert

and update operations. Our methods systematically avoid all complex and distributed

operations for query execution.

Subsequently, we tackled in Chapter 5 the problem of storing and tracking provenance

during query execution (Research Question Q2). We leveraged our molecule-based

storage model to store provenance data. We co-located data based on provenance, thus

maintaining provenance information in a very compact form. We described two possible

storage models for supporting provenance in Linked Data Management Systems. We

also presented algorithms to track the provenance of query answering. Our provenance-

aware techniques not only present simple tracing of sources for query answers, but also

consider fine-grained multilevel provenance.

Finally, we described in Chapter 6 our techniques to tailor queries over Linked Data

with provenance data (Research Question Q3). We extended our provenance-aware

techniques with five query execution strategies to enable specifying constrains of data

used to derive the answer. We introduced new provenance-based indexing strategies

and materialization algorithms to better handle such workloads.

Our experimental evaluations of the presented techniques showed that our molecule-

based storage model represents an optimal way of co-locating Linked Data in a very

compact manner, resulting in excellent performance when executing queries in the

cloud. Moreover, when extended to store provenance data, it remains efficient from

a storage consumption perspective, and allows time-efficient tracing of the queries’ lin-

eage. Furthermore, evaluating the presented provenance-aware techniques, we showed

that because provenance is prevalent within Linked Data and is highly selective, it can

be used to improve query processing performance.

7.1 Future Work

The presented work could be extended in several directions; we elaborate on a series of

possible avenues for future work below.

In Chapter 4, we leveraged templates defined by the type of the various resources and

identified an interesting problem in automatic templates discovery based on frequent

150

patterns for untyped elements. Despite the fact that Linked Data is generally schema-

free, it tends to exhibit frequent patterns which allow to reconstruct a reliable schema for

the considered data. Such emerging schema templates could be afterwards leveraged to

cluster the molecules. The clustering would be done only among elements which belong

to templates that are related to each other. The main idea is to first cluster templates into

sub-groups of elements having strong relations. In the second step, we would rank

relations between molecules regrouped under the previously clustered templates sub-

groups. We can distinguish four sub-problems to be solved in this context: discovering

basic templates, merging templates, co-locating templates, and co-locating molecules.

In addition, we plan to investigate dynamic storage models to enable further optimiza-

tion in memory consumption and query execution. In this context, we can leverage

techniques developed around graph theory, machine learning, and rankings to decide

which templates could be extended to higher scopes in order to improve performance.

The next possible way to improve performance in this area would be to use data affinity

techniques to decide if and which molecules could be replicated among multiple nodes

in the cloud to further eliminate expensive distributed operations. Both those avenues

can also be explored for dynamically incoming data (streams) and workload-driven op-

timization techniques. The template structures and replication can be dynamically ad-

justed using the aforementioned methods with incoming data and workload to optimize

data organization.

In our techniques, we used highly efficient data structures to organize resources in mem-

ory. Those data structures however tend to be suboptimal in terms of in-memory and

disk consumption. This suggest a trade-off between in-memory computations and query

execution performance which can pose issues when storing data on low-capacity stor-

age devices. We plan to investigate a low-level compression mechanism to optimize

storage consumption (e.g., like those from RDF-3X [90] or HDT [82]). One possible

way would to compute deltas between element in molecules to minimize the number of

bytes consumed by each value; in Section 4.1.3, we describe our current serialization

strategy, which could be further extended to store buckets (subsets) of deltas instead

of full IDs. Another possible way would be to consider bit maps for our molecules,

similarly to those presented in BitMat [9]. Such compressed elements can also be used

to transfer data trough the network in distributed environments, which, as we show in

Section 4.5.5, represents a significant part of query execution time.

In terms of provenance handling, we plan to extend our current implementation to out-

put PROV, which would open the door to queries over the provenance of the query

151

results and the data itself – merging both internal and external provenance. Such an

approach would facilitate trust computation over provenance that takes into account the

history of the original data as well as how it was processed within the database. Also,

we plan to add some support for comparing queries (e.g., diffs) based on their results

and on provenance information.

Another interesting question worth investigating is whether provenance can be lever-

aged to partition Linked Data in the cloud e.g., if molecules sharing the same prove-

nance should be co-located on one node to eliminate distributed operations. Also, trac-

ing provenance in a distributed environment can introduce interesting challenges e.g.,

whether introducing information about the nodes providing results can help to evaluate

the validity of the results or to discover bottlenecks in the underlying physical infras-

tructure.

All presented techniques can also be combined with new developments such as the

Internet of Everything, the Physical Web, or Machine to Machine communication tech-

nologies. Such applications will definitely impose interesting constraints and generate

novel and challenging workloads for future Linked Data Management Systems.

List of Figures

1.1 The diagram shows the interconnectedness of datasets (nodes in the
graph) that have been published by heterogeneous contributors to the
Linking Open Data community project. It is based on research con-
ducted in April 2014. 2

1.2 An exemplary graph of triples. [36] 5
1.3 Example showing an RDF sub-graph using the subject, predicate, and

object relations given by the sample data. 5

2.1 A simple RDF storage scheme using a linearized triple representation.
The illustration uses schema elements from the Berlin SPARQL Benchmark[22] 21

2.2 Logical database design of the triple table in 3store. Illustration after [61] 22
2.3 Dependency for the two different triple types [61]. 23
2.4 Example illustrating clustered property tables. Frequently coaccessed

attributes are stored together. 24
2.5 Example illustrating RDF property tables. For each existing predicate

one subject-object table exists . 25
2.6 Example illustrating clustered property tables. In this example, only

commonly used predicates are clustered in property tables. 26
2.7 The above listing shows a translation of the triple definition using the

RDF MATCH() table function into SQL. 26
2.8 4Store: System Architecture [62] . 31
2.9 BitMat: sample bit matrix [11] . 32
2.10 Exhaustive Indexing . 33
2.11 Hexastore Index Structure, Figure after[109] 34
2.12 RDF-3X compression example [90]. 35
2.13 BitMat: Simple query execution [11] 36
2.14 gStore: Adjacency List Table [114] . 38
2.15 gStore: Signature Graphs [114] . 38
2.16 DOGMA: Index [24] . 39
2.17 gStore: S-tree [114] . 40
2.18 gStore: VS-tree [114] . 41
2.19 DOGMA: Example RDF graph (a) and query (b) [24] 42
2.20 DOGMA: Execution of DOGMA basic [24] 43
2.21 RAPID: RDFMap representing a TripleGroup [101] 44
2.22 MapReduce + RDF-3X: System Architecture[71] 45
2.23 RAPID+: Query execution in [76] . 47

152

153

2.24 SHARD: A schema of the clause iteration algorithm [101] 48

3.1 Results for BSBM showing 1 billion and 100 million triples datasets
run on a 16 node cluster. Results for the 100 million dataset on a single
node are also shown to illustrate the effect of the cluster size. 60

3.2 Results for the DBpedia SPARQL Benchmark and loading times. 61

4.1 The two main data structures in DiploCloud: molecule clusters, storing
in this case RDF subgraphs about students, and a template list, storing
a list of literal values corresponding to student IDs. 67

4.2 An insert using templates: an incoming triple (left) is matched to the
current RDF template of the database (right), and inserted into the hash-
table, a cluster, and a template list. 70

4.3 A molecule template (i) along with one of its RDF molecules (ii) 71
4.4 The architecture of DiploCloud. 72
4.5 Query execution time for the 10 universities LUBM data set 86
4.6 Query execution time for the 100 universities LUBM data set 87
4.7 Query execution time for the 1 department BowlognaBench data set. . . 88
4.8 Query execution time for the 10 department BowlognaBench data set. . 89
4.9 Query execution time for 4 nodes and 400 universities LUBM data set . 91
4.10 Query execution time for 8 nodes and 800 universities LUBM data set . 92
4.11 Query execution time for 16 nodes and 1600 universities LUBM data set 93
4.12 Query execution time for DBPedia running on 4 nodes 93
4.13 Query execution time for DBPedia running on 8 nodes 93
4.14 Query execution time for DBPedia running on 16 nodes 94
4.15 Scope-1 and adaptive partitioning on the most complex LUBM queries

for 4 nodes. 94
4.16 Scope-1 and adaptive partitioning on the most complex LUBM queries

for 8 nodes. 94
4.17 Scope-1 and adaptive partitioning on the most complex LUBM queries

for 16 nodes. 95
4.18 Query execution time on Amazon EC2 for 1600 Universities from LUBM

dataset. 98
4.19 Scope-1 and adaptive partitioning on Amazon EC2 (32 Nodes) for 1600

Universities from LUBM dataset. 99
4.20 Scope-1 and adaptive partitioning on Amazon EC2 (64 Nodes) for 1600

Universities from LUBM dataset. 99

5.1 The architecture of TripleProv; the system takes as input queries (and
optionally a provenance granularity level), and produces as output query
results along with their corresponding provenance polynomials. 102

5.2 A molecule template (i) along with one of its RDF molecules (ii). . . . 106
5.3 caption . 108
5.4 Query execution times (in seconds) for the BTC dataset (logarithmic

scale) . 116

154

5.5 Query execution times (in seconds) for the WDC dataset (logarithmic
scale) . 117

5.6 Overhead of tracking provenance compared to the vanilla version of the
system for the BTC dataset . 118

5.7 Overhead of tracking provenance compared to the vanilla version of the
system for the WDC dataset . 119

5.8 Loading times and memory consumption for the BTC dataset 120
5.9 Loading times and memory consumption for the WDC dataset 120

6.1 Executing provenance-enabled queries; both a workload and a prove-
nance query are given as input to a triplestore, which produces results
for both queries and then combine them to obtain the final results. . . . 124

6.2 Generic provenance-enabled query execution pipeline, where both the
workload queries and the provenance query get executed in order to
produce the final results . 126

6.3 Our physical storage model for co-locating context values (ctx) with the
predicates and objects (PO) inside an RDF molecule. 132

6.4 Provenance-driven indexing schema 132
6.5 The molecule after materialization, driven by a provenance query re-

turning only one context value (ctx1). 133
6.6 Set of molecules which contain at least some data related to a prove-

nance query. 133
6.7 Query execution times for the BTC dataset (logarithmic scale) 137
6.8 Query execution times for the WDC dataset (logarithmic scale). 138
6.9 Distribution of number of triples for number of context values for the

BTC dataset. 139
6.10 Query execution times for the BTC dataset (logarithmic scale), Repre-

sentative Scenario. 144
6.11 Cumulative query execution time including time of materialization for

2’000 repetitions of query 1 for BTC. 145
6.12 Query execution time vs. number of basic operations from experimental

results from our model, where the model parameters a and b were fit to
0.85 and -9.85, respectively. 146

List of Tables

3.1 Total Cost – BSBM 100 million on 8 nodes 59

4.1 Load times and size of the databases for the 10 universities LUBM data
set. 86

4.2 Load times and size of the databases for the 100 universities LUBM
data set. 86

4.3 Load times and size of the databases for the 1 department BowlognaBench
data set. 87

4.4 Load times and size of the databases for the 10 department BowlognaBench
data set. 88

4.5 Joins analysis for several system on the LUBM workload (Distributed
Environment). For DiploCloud scope-1/adaptive molecules. 92

4.6 Load times and size of the databases for the LUBM data set (Distributed
Environment). 96

4.7 Load times and size of the databases for the DBPedia data set (Dis-
tributed Environment). 96

6.1 Query execution analysis for TripleProv and the Post-Filtering strategy. 141
6.2 Query execution analysis for the Rewriting strategy. 142
6.3 Query execution analysis for the Full Materialization strategy. 142
6.4 Query execution analysis for the Pre-Filtering and Adaptive Partial Ma-

terialization strategies. 142
6.5 Query execution analysis for the Pre-Filtering and Partial Materializa-

tion strategies for the Representative Scenario. 143

155

Bibliography

[1] Jans Aasman. Allegro graph: RDF triple database. Technical report, Technical

report. Franz Incorporated, 2006. ur l: http://www. franz. com/agraph/allegro-

graph/(visited on 10/14/2013)(cited on pp. 52, 54), 2006.

[2] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach.

Scalable Semantic Web Data Management Using Vertical Partitioning. In Pro-

ceedings of the 33rd International Conference on Very Large Data Bases, Uni-

versity of Vienna, Austria, September 23-27, 2007, pages 411–422. ACM, 2007.

[3] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud com-

puting: new wine or just new bottles? Proceedings of the VLDB Endowment,

3(1-2):1647–1648, 2010.

[4] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud com-

puting: current state and future opportunities. In Proceedings of the 14th Inter-

national Conference on Extending Database Technology, pages 530–533. ACM,

2011.

[5] Rakesh Agrawal, Amit Somani, and Yirong Xu. Storage and Querying of E-

Commerce Data. In VLDB 2001, Proceedings of 27th International Conference

on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 149–158.

Morgan Kaufmann, 2001.

[6] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, and Dimitris

Plexousakis. On Storing Voluminous RDF Descriptions: The Case of Web Portal

Catalogs. In WebDB, pages 43–48, 2001.

[7] Bahareh Arab, Dieter Gawlick, Venkatesh Radhakrishnan, Hao Guo, and Boris

Glavic. A generic provenance middleware for queries, updates, and transac-

tions. In 6th USENIX Workshop on the Theory and Practice of Provenance (TaPP

2014), Cologne, June 2014. USENIX Association.

156

157

[8] Nikolas Askitis and Ranjan Sinha. Hat-trie: a cache-conscious trie-based data

structure for strings. In Proceedings of the thirtieth Australasian conference on

Computer science-Volume 62, pages 97–105. Australian Computer Society, Inc.,

2007.

[9] Medha Atre, Vineet Chaoji, Jesse Weaver, and Gregory Williamss. Bitmat: An

in-core rdf graph store for join query processing. In Rensselaer Polytechnic In-

stitute Technical Report, 2009.

[10] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler. Matrix

”Bit” loaded: a scalable lightweight join query processor for RDF data. In Pro-

ceedings of the 19th International Conference on World Wide Web, WWW 2010,

Raleigh, North Carolina, USA, April 26-30, 2010, pages 41–50. ACM, 2010.

[11] Medha Atre and James A Hendler. BitMat: a main memory bit-matrix of RDF

triples. In The 5th International Workshop on Scalable Semantic Web Knowledge

Base Systems (SSWS2009), page 33. Citeseer, 2009.

[12] Sören Auer, Jan Demter, Michael Martin, and Jens Lehmann. Lodstats–an ex-

tensible framework for high-performance dataset analytics. In Knowledge Engi-

neering and Knowledge Management, pages 353–362. Springer, 2012.

[13] Colin R. Batchelor, Christian Y. A. Brenninkmeijer, Christine Chichester, Mark

Davies, Daniela Digles, Ian Dunlop, Chris T. A. Evelo, Anna Gaulton, Carole A.

Goble, Alasdair J. G. Gray, Paul T. Groth, Lee Harland, Karen Karapetyan, Anto-

nis Loizou, John P. Overington, Steve Pettifer, Jon Steele, Robert Stevens, Valery

Tkachenko, Andra Waagmeester, Antony J. Williams, and Egon L. Willighagen.

Scientific lenses to support multiple views over linked chemistry data. In ISWC

2014 - 13th International Semantic Web Conference, Riva del Garda, Italy, Oc-

tober 19-23, 2014. Proceedings, Part I, pages 98–113, October 2014.

[14] Christian Becker. RDF store benchmarks with DBpedia, 2008. http://wifo5-

03.informatik.uni-mannheim.de/benchmarks-200801/.

[15] Tim Berners-Lee. Linked data-design issues, 2006.

[16] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific

american, 284(5):28–37, 2001.

[17] Mark A Beyer and Douglas Laney. The importance of ‘big data’: a definition.

Stamford, CT: Gartner, 2012.

158

[18] Olivier Biton, Sarah Cohen-Boulakia, and Susan B. Davidson. Zoom*userviews:

Querying relevant provenance in workflow systems. In Proceedings of the 33rd

International Conference on Very Large Data Bases, VLDB ’07, pages 1366–

1369. VLDB Endowment, 2007.

[19] Chris Bizer, Anja Jentzsch, and Richard Cyganiak. State of the lod cloud. Version

0.3 (September 2011), 1803, 2011.

[20] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far,

2009.

[21] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. International

Journal on Semantic Web and Information Systems (IJSWIS), 5(2):1–24, 2009.

[22] Christian Bizer and Andreas Schultz. The Berlin SPARQL Benchmark. Int. J.

Semantic Web Inf. Syst., 5(2):1–24, 2009.

[23] Matthias Bröcheler, Andrea Pugliese, and V. S. Subrahmanian. DOGMA: A

Disk-Oriented Graph Matching Algorithm for RDF Databases. In The Seman-

tic Web - ISWC 2009, 8th International Semantic Web Conference, ISWC 2009,

Chantilly, VA, USA, October 25-29, 2009. Proceedings, pages 97–113. Springer,

2009.

[24] Matthias Bröcheler, Andrea Pugliese, and VS Subrahmanian. Dogma: A disk-

oriented graph matching algorithm for rdf databases. In The Semantic Web-ISWC

2009, pages 97–113. Springer, 2009.

[25] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema. In The Semantic

Web - ISWC 2002, First International Semantic Web Conference, Sardinia, Italy,

June 9-12, 2002, Proceedings, pages 54–68. Springer, 2002.

[26] Jeremy J Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,

provenance and trust. In Proceedings of the 14th international conference on

World Wide Web, pages 613–622. ACM, 2005.

[27] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.

Bigtable: a distributed storage system for structured data. In Proceedings of

the 7th USENIX Symposium on Operating Systems Design and Implementation -

159

Volume 7, OSDI ’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Associ-

ation.

[28] Artem Chebotko, Shiyong Lu, Xubo Fei, and Farshad Fotouhi. Rdfprov: A

relational rdf store for querying and managing scientific workflow provenance.

Data Knowl. Eng., 69(8):836–865, August 2010.

[29] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in

databases: Why, how, and where. Now Publishers Inc, 2009.

[30] Christine Chichester, Pascale Gaudet, Oliver Karch, Paul Groth, Lydie Lane,

Amos Bairoch, Barend Mons, and Antonis Loizou. Querying nextprot nanopub-

lications and their value for insights on sequence variants and tissue expression.

Web Semantics: Science, Services and Agents on the World Wide Web, pages –,

2014.

[31] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srini-

vasan. An Efficient SQL-based RDF Querying Scheme. In Proceedings of the

31st International Conference on Very Large Data Bases, Trondheim, Norway,

August 30 - September 2, 2005, pages 1216–1227. ACM, 2005.

[32] World Wide Web Consortium. OWL 2 Web Ontology Language, 2012.

[33] World Wide Web Consortium. SPARQL 1.1 Overview, 2013.

[34] World Wide Web Consortium. RDF 1.1 Concepts and Abstract Syntax, 2014.

[35] World Wide Web Consortium. RDF 1.1: On Semantics of RDF Datasets, 2014.

[36] World Wide Web Consortium. RDF 1.1 Primer, 2014.

[37] World Wide Web Consortium. RDF Schema 1.1, 2014.

[38] P. Cudré-Mauroux, K.T. Lim, R. Simakov, E. Soroush, P. Velikhov, D. L. Wang,

M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S. Madden, J. M. Patel,

M. Stonebraker, and S. Zdonik. A Demonstration of SciDB: A Science-Oriented

DBMS. Proceedings of the VLDB Endowment (PVLDB), 2(2):1534–1537, 2009.

[39] P. Cudré-Mauroux, E. Wu, and S. Madden. The Case for RodentStore, an Adap-

tive, Declarative Storage System. In Biennial Conference on Innovative Data

Systems Research (CIDR), 2009.

160

[40] Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. Provenance

for sparql queries. In Proceedings of the 11th international conference on The

Semantic Web - Volume Part I, ISWC’12, pages 625–640, Berlin, Heidelberg,

2012. Springer-Verlag.

[41] Gianluca Demartini, Iliya Enchev, Marcin Wylot, Joel Gapany, and Philippe

Cudre-Mauroux. Bowlognabench - benchmarking rdf analytics. In Karl Aberer,

Ernesto Damiani, and Tharam Dillon, editors, Data-Driven Process Discovery

and Analysis, volume 116 of Lecture Notes in Business Information Processing,

pages 82–102. Springer Berlin Heidelberg, 2012.

[42] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-

Mauroux. OLTP-Bench: An Extensible Testbed for Benchmarking Relational

Databases. PVLDB, 7(4):277–288, 2013.

[43] Li Ding, Yun Peng, Paulo Pinheiro da Silva, and Deborah L. McGuinness. Track-

ing RDF Graph Provenance using RDF Molecules. In International Semantic

Web Conference, 2005.

[44] Orri Erling and Ivan Mikhailov. Towards web scale rdf. Proc. SSWS, 2008.

[45] Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS. In Net-

worked Knowledge-Networked Media, pages 7–24. Springer, 2009.

[46] George H. L. Fletcher and Peter W. Beck. Scalable indexing of RDF graphs for

efficient join processing. In Proceedings of the 18th ACM Conference on Infor-

mation and Knowledge Management, CIKM 2009, Hong Kong, China, November

2-6, 2009, pages 1513–1516. ACM, 2009.

[47] Giorgos Flouris, Irini Fundulaki, Panagiotis Pediaditis, Yannis Theoharis, and

Vassilis Christophides. Coloring rdf triples to capture provenance. In Proceed-

ings of the 8th International Semantic Web Conference, ISWC ’09, pages 196–

212, Berlin, Heidelberg, 2009. Springer-Verlag.

[48] Sever Fundatureanu. A scalable rdf store based on hbase. Master’s thesis, Vrije

University, 2012. http://archive.org/details/ScalableRDFStoreOverHBase.

[49] Luiz M. Gadelha, Jr., Michael Wilde, Marta Mattoso, and Ian Foster. Mtcprov: A

practical provenance query framework for many-task scientific computing. Dis-

trib. Parallel Databases, 30(5-6):351–370, October 2012.

161

[50] Hector Garcia-Molina. Database systems: the complete book. Pearson Education

India, 2008.

[51] Floris Geerts, Grigoris Karvounarakis, Vassilis Christophides, and Irini Fundu-

laki. Algebraic structures for capturing the provenance of sparql queries. In

Proceedings of the 16th International Conference on Database Theory, ICDT

’13, pages 153–164, New York, NY, USA, 2013. ACM.

[52] Boris Glavic and Gustavo Alonso. The perm provenance management system in

action. In Proceedings of the 2009 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’09, pages 1055–1058, New York, NY, USA,

2009. ACM.

[53] D Graham-Rowe, D Goldston, C Doctorow, M Waldrop, C Lynch, F Frankel,

R Reid, S Nelson, D Howe, SY Rhee, et al. Big data: science in the petabyte era.

Nature, 455(7209):8–9, 2008.

[54] Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings.

In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 31–40. ACM, 2007.

[55] Paul Groth, Yolanda Gil, James Cheney, and Simon Miles. Requirements for

provenance on the web. International Journal of Digital Curation, 7(1), 2012.

[56] Paul Groth and Luc Moreau (eds.). PROV-Overview. An Overview of the

PROV Family of Documents. W3C Working Group Note NOTE-prov-overview-

20130430, World Wide Web Consortium, April 2013.

[57] Paul T. Groth. Transparency and reliability in the data supply chain. IEEE Inter-

net Computing, 17(2):69–71, 2013.

[58] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudré-

Mauroux, and Samuel Madden. Hyrise - a main memory hybrid storage engine.

PVLDB, 4(2):105–116, 2010.

[59] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl

knowledge base systems. Web Semant., 3:158–182, October 2005.

[60] Harry Halpin and James Cheney. Dynamic provenance for sparql updates. In

Peter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig Knoblock,

Denny Vrandečić, Paul Groth, Natasha Noy, Krzysztof Janowicz, and Carole

162

Goble, editors, The Semantic Web – ISWC 2014, volume 8796 of Lecture Notes

in Computer Science, pages 425–440. Springer International Publishing, 2014.

[61] Stephen Harris and Nicholas Gibbins. 3store: Efficient Bulk RDF Storage. In

PSSS1 - Practical and Scalable Semantic Systems, Proceedings of the First Inter-

national Workshop on Practical and Scalable Semantic Systems, Sanibel Island,

Florida, USA, October 20, 2003. CEUR-WS.org, 2003.

[62] Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and imple-

mentation of a clustered rdf store. In 5th International Workshop on Scalable

Semantic Web Knowledge Base Systems (SSWS2009), pages 94–109, 2009.

[63] Andreas Harth and Stefan Decker. Optimized Index Structures for Querying RDF

from the Web. In IEEE LA-WEB, pages 71–80, 2005.

[64] O. Hartig. Provenance information in the web of data. In Proceedings of the 2nd

Workshop on Linked Data on the Web (LDOW2009), 2009.

[65] Olaf Hartig. Querying trust in rdf data with tsparql. In Proceedings of the 6th

European Semantic Web Conference on The Semantic Web: Research and Appli-

cations, ESWC 2009 Heraklion, pages 5–20, Berlin, Heidelberg, 2009. Springer-

Verlag.

[66] Rakebul Hasan and Fabien Gandon. Predicting SPARQL query performance. In

The Semantic Web: ESWC 2014 Satellite Events - ESWC 2014 Satellite Events,

Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers, pages 222–

225, 2014.

[67] Patrick Hayes and Brian McBride. Rdf semantics. W3C Recommendation,

February 2004.

[68] Tom Heath and Christian Bizer. Linked data: Evolving the web into a global data

space. Synthesis lectures on the semantic web: theory and technology, 1(1):1–

136, 2011.

[69] Joseph M Hellerstein and Michael Stonebraker. Readings in database systems.

MIT Press, 2005.

[70] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.

Yago2: A spatially and temporally enhanced knowledge base from wikipedia.

Artificial Intelligence, 194(0):28–61, 2013. Artificial Intelligence, Wikipedia and

Semi-Structured Resources.

163

[71] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL Querying of

Large RDF Graphs. PVLDB, 4(11):1123–1134, 2011.

[72] Trung Dong Huynh, Paul Groth, and Stephan Zednik (eds.). PROV Imple-

mentation Report. W3C Working Group Note NOTE-prov-implementations-

20130430, World Wide Web Consortium, April 2013.

[73] Maciej Janik and Krys Kochut. BRAHMS: A WorkBench RDF Store and High

Performance Memory System for Semantic Association Discovery. In The Se-

mantic Web - ISWC 2005, 4th International Semantic Web Conference, ISWC

2005, Galway, Ireland, November 6-10, 2005, Proceedings, pages 431–445.

Springer, 2005.

[74] Grigoris Karvounarakis, Zachary G Ives, and Val Tannen. Querying data prove-

nance. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, pages 951–962. ACM, 2010.

[75] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–

392, 1998.

[76] HyeongSik Kim, Padmashree Ravindra, and Kemafor Anyanwu. From sparql

to mapreduce: The journey using a nested triplegroup algebra. PVLDB,

4(12):1426–1429, 2011.

[77] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. OWLIM–a pragmatic

semantic repository for OWL. In Web Information Systems Engineering–WISE

2005 Workshops, pages 182–192. Springer, 2005.

[78] Günter Ladwig and Andreas Harth. CumulusRDF: Linked data management on

nested key-value stores. In The 7th International Workshop on Scalable Semantic

Web Knowledge Base Systems (SSWS 2011), page 30, 2011.

[79] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured

storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[80] Doug Laney. 3d data management: Controlling data volume, velocity and variety.

META Group Research Note, 6:70, 2001.

[81] luc Moreau and Groth Paul. Provenance: An Introduction to PROV. Morgan and

Claypool, September 2013.

164

[82] Miguel A. Martı́nez-Prieto, Mario Arias, and Javier D. Fernandez. Exchange

and Consumption of Huge RDF Data. In The Semantic Web: Research and

Applications, pages 437–452. Springer, 2012.

[83] Ruslan Mavlyutov, Marcin Wylot, and Philippe Cudre-Mauroux. A comparison

of data structures to manage uris on the web of data. In The Semantic Web:

Trends and Challenges. Springer, 2015.

[84] Brian McBride. Jena: A semantic web toolkit. IEEE Internet computing,

6(6):55–59, 2002.

[85] Simon Miles. Electronically querying for the provenance of entities. In Luc

Moreau and Ian Foster, editors, Provenance and Annotation of Data, volume

4145 of Lecture Notes in Computer Science, pages 184–192. Springer Berlin

Heidelberg, 2006.

[86] Luc Moreau. The foundations for provenance on the web. Foundations and

Trends in Web Science, 2(2–3):99–241, November 2010.

[87] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,

Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale,

Yogesh Simmhan, Eric Stephan, and Jan Van den Bussche. The open prove-

nance model core specification (v1.1). Future Generation Computer Systems,

27(6):743–756, June 2011.

[88] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga

Ngomo. Dbpedia sparql benchmark–performance assessment with real queries

on real data. In The Semantic Web–ISWC 2011, pages 454–469. Springer, 2011.

[89] Hannes Mühleisen and Christian Bizer. Web data commons - extracting struc-

tured data from two large web corpora. In Christian Bizer, Tom Heath, Tim

Berners-Lee, and Michael Hausenblas, editors, LDOW, volume 937 of CEUR

Workshop Proceedings. CEUR-WS.org, 2012.

[90] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style engine for RDF.

Proceedings of the VLDB Endowment (PVLDB), 1(1):647–659, 2008.

[91] Thomas Neumann and Gerhard Weikum. Scalable join processing on very large

rdf graphs. In Proceedings of the 2009 ACM SIGMOD International Conference

on Management of data, pages 627–640. ACM, 2009.

165

[92] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable man-

agement of RDF data. VLDB J., 19(1):91–113, 2010.

[93] Own O’Malley. Terabyte sort on apache hadoop, 2008.

[94] Alisdair Owens, Andy Seaborne, Nick Gibbins, et al. Clustered tdb: a clustered

triple store for jena, 2008.

[95] Panagiotis Pediaditis, Giorgos Flouris, Irini Fundulaki, and Vassilis

Christophides. On explicit provenance management in rdf/s graphs. In

Workshop on the Theory and Practice of Provenance, 2009.

[96] Eric Prud’Hommeaux, Andy Seaborne, et al. Sparql query language for rdf. W3C

recommendation, 15, 2008.

[97] D. Wood R. Cyganiak and M. Lanthaler (Ed.). RDF 1.1 Concepts and Abstract

Syntax. W3C Recommendation, February 2014. http://www.w3.org/TR/rdf11-

concepts/.

[98] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. A case for fractured

mirrors. In Proceedings of the 28th international conference on Very Large Data

Bases, VLDB ’02, pages 430–441. VLDB Endowment, 2002.

[99] Padmashree Ravindra, Vikas V Deshpande, and Kemafor Anyanwu. Towards

scalable rdf graph analytics on mapreduce. In Proceedings of the 2010 Workshop

on Massive Data Analytics on the Cloud, page 5. ACM, 2010.

[100] Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu. An Intermedi-

ate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce. In The

Semanic Web: Research and Applications - 8th Extended Semantic Web Confer-

ence, ESWC 2011, Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceed-

ings, Part II, pages 46–61. Springer, 2011.

[101] Kurt Rohloff and Richard E Schantz. Clause-iteration with mapreduce to scal-

ably query datagraphs in the shard graph-store. In Proceedings of the fourth

international workshop on Data-intensive distributed computing, pages 35–44.

ACM, 2011.

[102] Satya Sahoo, Paul Groth, Olaf Hartig, Simon Miles, Sam Coppens, James My-

ers, Yolanda Gil, Luc Moreau, Jun Zhao, Michael Panzer, et al. Provenance

vocabulary mappings. Technical report, W3C, 2010.

166

[103] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of the

linked data best practices in different topical domains. In The Semantic Web–

ISWC 2014, pages 245–260. Springer, 2014.

[104] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,

E. Lau, A. Lin, S. R. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and

S. Zdonik. C-Store: A Column Oriented DBMS. In International Conference on

Very Large Data Bases (VLDB), 2005.

[105] Yannis Theoharis, Irini Fundulaki, Grigoris Karvounarakis, and Vassilis

Christophides. On provenance of queries on semantic web data. IEEE Inter-

net Computing, 15(1):31–39, January 2011.

[106] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis Christophides,

and Peter Boncz. Heuristics-based query optimisation for sparql. In Proceedings

of the 15th International Conference on Extending Database Technology, 2012.

[107] Octavian Udrea, Diego Reforgiato Recupero, and VS Subrahmanian. Annotated

RDF. ACM Transactions on Computational Logic (TOCL), 11(2):10, 2010.

[108] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Niels Drost, Frank Seinstra,

Frank Van Harmelen, and Henri Bal. H.: Webpie: A web-scale parallel infer-

ence engine. In In: Third IEEE International Scalable Computing Challenge

(SCALE2010), held in conjunction with the 10th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing (CCGrid), 2010.

[109] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextuple

indexing for semantic web data management. Proceeding of the VLDB Endow-

ment (PVLDB), 1(1):1008–1019, 2008.

[110] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. Efficient

rdf storage and retrieval in jena2. In SWDB’03, pages 131–150, 2003.

[111] Kevin Wilkinson and Kevin Wilkinson. Jena property table implementation.

In International Workshop on Scalable Semantic Web Knowledge Base Systems

(SSWS), 2006.

[112] Jun Zhao, Christian Bizer, Yolanda Gil, Paolo Missier, and Satya Sahoo. Prove-

nance requirements for the next version of rdf. In W3C Workshop RDF Next

Steps, 2010.

167

[113] Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A

general framework for representing, reasoning and querying with annotated se-

mantic web data. Web Semant., 11:72–95, March 2012.

[114] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Oezsu, and Dongyan Zhao. gstore:

Answering sparql queries via subgraph matching. PVLDB, 4(8), 2011.

168

Marcin Wylot September 18, 1982 marcin.wylot@unifr.ch

Experience
University of Fribourg FRIBOURG, SWITZERLAND

PhD Student, Researcher March 2011 – August 2015

Vrije Universiteit Amsterdam AMSTERDAM, THE NETHERLANDS

Visiting Researcher June 2013 – August 2013

Asseco Poland WARSAW, POLAND

Information Technology Specialist December 2007 – January 2011

Warsaw School of Information Technology WARSAW, POLAND

System Administrator January 2006 – June 2007

Prokom Software WARSAW, POLAND

Database Specialist September 2005 – November 2005

MasterFilm LTD. WARSAW, POLAND

System Administrator and Software Engineer September 2004 – May 2005

Education
University of Fribourg FRIBOURG, SWITZERLAND

Doctor of Philosophy (Ph.D.) in Computer Science March 2011 – June 2015

Claude Bernard University (Lyon I) LYON, FRANCE

Research Internship February 2009 – June 2009

University of Lodz LODZ, POLAND

Master’s Degree in Computer Science October 2007 – April 2010

Warsaw School of Information Technology WARSAW, POLAND

Bachelor’s Degree in Computer Science October 2002 – October 2006

mailto:marcin.wylot@unifr.ch

	1 Introduction
	1.1 Background Information
	1.1.1 Linked Data Concepts
	1.1.2 Provenance

	1.2 Research Questions
	1.3 Contributions
	1.3.1 List of Publications

	1.4 Outline

	2 Current Approaches to Manage Linked Data
	2.1 Storing Linked Data using Relational Databases
	2.1.1 Statement Table
	2.1.2 Optimizing Data Storage
	2.1.3 Property Tables
	2.1.3.1 Clustered Property Tables
	2.1.3.2 Normalized Property Table

	2.1.4 Query Execution

	2.2 Native Linked Data Stores
	2.2.1 Quadruple Systems
	2.2.1.1 Data Storage and Partitioning
	2.2.1.2 Indexing
	2.2.1.3 Query Execution

	2.2.2 Index Permuted Stores
	2.2.2.1 Indexing and Data Storage
	2.2.2.2 Query Execution

	2.2.3 Graph-Based Systems
	2.2.3.1 Data Storage and Partitioning
	2.2.3.2 Indexing
	2.2.3.3 Query Execution

	2.3 Massively Parallel Processing for Linked Data
	2.3.1 Data Storage and Partitioning
	2.3.2 Query Execution

	3 An Empirical Evaluation of NoSQL Systems to Manage Linked Data
	3.1 Systems
	3.1.1 4store
	3.1.2 Jena+HBase
	3.1.3 Hive+HBase
	3.1.4 CumulusRDF: Cassandra+Sesame
	3.1.5 Couchbase

	3.2 Experimental Setting
	3.2.1 Benchmarks
	3.2.1.1 Berlin SPARQL Benchmark (BSBM)
	3.2.1.2 DBpedia SPARQL Benchmark (DBPSB)

	3.2.2 Computational Environment
	3.2.3 System Settings
	3.2.3.1 4store
	3.2.3.2 Jena+HBase
	3.2.3.3 Hive+HBase
	3.2.3.4 CumulusRDF (Cassandra+Sesame)
	3.2.3.5 Couchbase

	3.3 Performance Evaluation
	3.3.1 4store
	3.3.2 Jena+HBase
	3.3.3 Hive+HBase
	3.3.4 CumulusRDF: Cassandra+Sesame
	3.3.5 Couchbase

	3.4 Conclusions

	4 Storing and Querying Linked Data in the Cloud
	4.1 Storage Model
	4.1.1 Key Index
	4.1.2 Templates
	4.1.3 Molecules
	4.1.4 Auxiliary Indexes

	4.2 System Overview
	4.2.1 Master Node
	4.2.2 Worker Nodes

	4.3 Data Partitioning & Allocation
	4.3.1 Physiological Data Partitioning
	4.3.2 Distributed Data Allocation

	4.4 Common Operations
	4.4.1 Bulk Load
	4.4.2 Updates
	4.4.3 Query Processing
	4.4.3.1 Basic Graph Patterns
	4.4.3.2 Molecule Queries
	4.4.3.3 Aggregates and Analytics
	4.4.3.4 Distributed Join

	4.5 Performance Evaluation
	4.5.1 Datasets and Workloads
	4.5.2 Methodology
	4.5.3 Systems
	4.5.4 Centralized Environment
	4.5.4.1 Hardware Platform
	4.5.4.2 Results

	4.5.5 Distributed Environment
	4.5.5.1 Hardware Platform
	4.5.5.2 Results

	4.6 Conclusions

	5 Storing and Tracing Provenance in a Linked Data Management System
	5.1 System Overview
	5.2 Provenance Polynomials
	5.2.1 Provenance Granularity Levels

	5.3 Storage Models
	5.3.1 Native Storage Model
	5.3.2 Storage Model Variants for Provenance

	5.4 Query Execution
	5.4.1 General Query Answering Algorithm
	5.4.2 Example Queries

	5.5 Performance Evaluation
	5.5.1 Hardware Platform
	5.5.2 Datasets
	5.5.3 Workloads
	5.5.4 Experimental Methodology
	5.5.5 Variants Considered
	5.5.6 Comparison to 4Store
	5.5.7 Query Execution Times
	5.5.8 Loading Times & Memory Consumption

	5.6 Conclusions

	6 Executing Provenance-Enabled Queries over Linked Data
	6.1 Provenance-Enabled Queries
	6.2 Provenance in Query Processing
	6.2.1 Query Execution Pipeline
	6.2.2 Generic Query Execution Algorithm
	6.2.3 Query Execution Strategies

	6.3 Storage Model and Indexing
	6.3.1 Provenance Storage Model
	6.3.2 Provenance Index
	6.3.3 Provenance-Driven Full Materialization
	6.3.4 Adaptive Partial Materialization

	6.4 Experiments
	6.4.1 Implementations Considered
	6.4.2 Experimental Environment
	6.4.3 Results
	6.4.3.1 Datasets Analysis
	6.4.3.2 Discussion
	6.4.3.3 Query Performance Analysis
	6.4.3.4 Representative Scenario

	6.4.4 End-to-End Workload Optimization

	6.5 Conclusions

	7 Conclusions
	7.1 Future Work

	List of Figures
	List of Tables
	Bibliography

